Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28409
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJOUCK, Toon-
dc.contributor.authorde Leoni, Massimiliano-
dc.contributor.authorDEPAIRE, Benoit-
dc.date.accessioned2019-06-14T08:23:48Z-
dc.date.available2019-06-14T08:23:48Z-
dc.date.issued2019-
dc.identifier.citationDaniel, Florian; Sheng, Quan Z.; Motahari, Hamid (Ed.). Business Process Management Workshops, Springer Inernational Publishing, p. 482-493-
dc.identifier.isbn978-3-030-11641-5-
dc.identifier.issn1865-1348-
dc.identifier.urihttp://hdl.handle.net/1942/28409-
dc.description.abstractDuring the last decade several decision mining techniques have been developed to discover the decision perspective of a process from an event log. The increasing number of decision mining techniques raises the importance of evaluating the quality of the discovered decision models and/or decision logic. Currently, the evaluations are limited because of the small amount of available event logs with decision information. To alleviate this limitation, this paper introduces the `DataExtend' technique that allows evaluating and comparing decision-mining techniques with each other, using a sufficient number of event logs and process models to generate evaluation results that are statistically significant. This paper also reports on an initial evaluation using `DataExtend' that involves two techniques to discover decisions, whose results illustrate that the approach can serve the purpose.-
dc.language.isoen-
dc.publisherSpringer Inernational Publishing-
dc.relation.ispartofseriesLecture Notes in Business Information Processing-
dc.rightsSpringer Nature Switzerland AG 2019-
dc.subject.otherDecision mining-
dc.subject.otherEvaluation-
dc.subject.otherLog generation-
dc.titleA Framework to Evaluate and Compare Decision-Mining Techniques-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsDaniel, Florian-
local.bibliographicCitation.authorsSheng, Quan Z.-
local.bibliographicCitation.authorsMotahari, Hamid-
local.bibliographicCitation.conferencedate9 sep 2018 - 14 sep 2018-
local.bibliographicCitation.conferencenameInternational Conference on Business Process Management-
local.bibliographicCitation.conferenceplaceSydney, Australia-
dc.identifier.epage493-
dc.identifier.spage482-
dc.identifier.volume342-
local.bibliographicCitation.jcatC1-
local.publisher.placeCham-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr342-
dc.identifier.doi10.1007/978-3-030-11641-5_38-
dc.identifier.isi001288517800038-
local.provider.typeWeb of Science-
local.bibliographicCitation.btitleBusiness Process Management Workshops-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorJOUCK, Toon-
item.contributorde Leoni, Massimiliano-
item.contributorDEPAIRE, Benoit-
item.fullcitationJOUCK, Toon; de Leoni, Massimiliano & DEPAIRE, Benoit (2019) A Framework to Evaluate and Compare Decision-Mining Techniques. In: Daniel, Florian; Sheng, Quan Z.; Motahari, Hamid (Ed.). Business Process Management Workshops, Springer Inernational Publishing, p. 482-493.-
item.accessRightsRestricted Access-
item.validationvabb 2021-
crisitem.journal.issn1865-1348-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
paper.pdf
  Restricted Access
Peer-reviewed author version413.51 kBAdobe PDFView/Open    Request a copy
Business Process Management Workshops.pdf
  Restricted Access
Published version593.79 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.