Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28420
Title: Additive first-order queries
Authors: Berger, Gerald
Otto, Martin
Pieris, Andreas
SURINX, Dimitri 
VAN DEN BUSSCHE, Jan 
Issue Date: 2019
Source: Barcelo, Pablo; Calautti, Marco (Ed.). 22nd International Conference on Database Theory (ICDT 2019),p. 1-14 (Art N° 19)
Series/Report: LIPIcs – Leibniz International Proceedings in Informatics
Abstract: A database query q is called additive if q(A ∪ B) = q(A) ∪ q(B) for domain-disjoint input databases A and B. Additivity allows the computation of the query result to be parallelised over the connected components of the input database. We define the “connected formulas” as a syntactic fragment of first-order logic, and show that a first-order query is additive if and only if it expressible by a connected formula. This characterisation specializes to the guarded fragment of first-order logic. We also show that additivity is decidable for formulas of the guarded fragment, establish the computational complexity, and do the same for positive-existential formulas. Our results hold when restricting attention to finite structures, as is common in database theory, but also hold in the unrestricted setting.
Keywords: Expressive power
Document URI: http://hdl.handle.net/1942/28420
Link to publication/dataset: http://drops.dagstuhl.de/opus/volltexte/2019/10321/
ISBN: 978-3-95977-101-6
DOI: 10.4230/LIPIcs.ICDT.2019.19
Rights: Gerald Berger, Martin Otto, Andreas Pieris, Dimitri Surinx, and Jan Van den Bussche; licensed under Creative Commons License CC-BY
Category: C1
Type: Proceedings Paper
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
LIPIcs-ICDT-2019-19.pdfPublished version497.66 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.