Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28445
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDE WILD, Jessica-
dc.contributor.authorSimor, Marcel-
dc.contributor.authorBULDU KOHL, Dilara-
dc.contributor.authorKOHL, Thierry-
dc.contributor.authorBRAMMERTZ, Guy-
dc.contributor.authorMEURIS, Marc-
dc.contributor.authorPOORTMANS, Jef-
dc.contributor.authorVERMANG, Bart-
dc.date.accessioned2019-06-18T09:41:39Z-
dc.date.available2019-06-18T09:41:39Z-
dc.date.issued2019-
dc.identifier.citationTHIN SOLID FILMS, 671, p. 44-48-
dc.identifier.issn0040-6090-
dc.identifier.urihttp://hdl.handle.net/1942/28445-
dc.description.abstractKF and NaF treatments were done for single-stage co-evaporated CuIn0.7Ga0.3Se2. The absorber layers were grown on a substrate with an alkali barrier layer and NaF was either added before or after absorber layer growth. No differences were found on the device performance amongst the procedures to add Na. This is expected if the single-stage process does not have a copper rich stage or a Ga gradient, which is likely since there was no change of the elemental fluxes during absorber layer growth and no Ga profile was measured. KF was added by post-deposition only. Current-voltage characteristics were measured and net doping concentrations were determined from capacitance-voltage measurements (CV). We see an improvement of the open-circuit voltage (Voc) with increasing KF amount, and a marginal increase of the fill factor. CV measurements showed increasing net acceptor concentration with increasing KF amount. Time resolved photoluminescence (PL) showed an increased decay time for KF treated cells and the PL peak shape changed. Without KF treatment the PL peak is symmetric, after KF treatment a further peak appears at higher energy in the PL spectrum. This higher energy peak increases in intensity with increasing KF concentration. The same effects were seen in a sample without Na, but here the Voc was limited due to large tailing. Hence both Na and K are required for good cell efficiencies.-
dc.description.sponsorshipThis work received funding from the European Union’s H2020 research and innovation program under grant agreement No. 715027-
dc.language.isoen-
dc.subject.otherCopper indium gallium selenide; Solar cells; Single-stage; Alkali treatment; Thin film; Co-evaporation-
dc.titleAlkali treatment for single-stage co-evaporated thin CuIn0.7Ga0.3Se2 solar cells-
dc.typeJournal Contribution-
dc.identifier.epage48-
dc.identifier.spage44-
dc.identifier.volume671-
local.bibliographicCitation.jcatA1-
dc.relation.references[1] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se 2 solar cells with efficiencies up to 22.6%, Phys. Status Solidi - Rapid Res. Lett. 10 (2016) 583–586. doi:10.1002/pssr.201600199. [2] M. Theelen, V. Hans, N. Barreau, H. Steijvers, Z. Vroon, M. Zeman, The impact of alkali elements on the degradation of CIGS solar cells, Prog. Photovoltaics Res. Appl. 23 (2015) 537–545. doi:10.1002/pip.2610. [3] B. Vermang, F. Rostvall, V. Fjällström, M. Edoff, Potential-induced optimization of ultra-thin rear surface passivated CIGS solar cells, Phys. Status Solidi - Rapid Res. Lett. 8 (2014) 908–911. doi:10.1002/pssr.201409387. [4] D.J. Schroeder, A.A. Rockett, Electronic effects of sodium in epitaxial CuIn1−xGaxSe2, J. Appl. Phys. 82 (1998) 4982. doi:10.1063/1.366365. [5] T. Nakada, D. Iga, H. Ohbo, A. Kunioka, Effects of Sodium on C u ( I n , G a ) S e 2 -Based Thin Films and Solar Cells, Jpn. J. Appl. Phys. 36 (1997) 732–737. doi:10.1143/JJAP.36.732. [6] H. Stange, S. Brunken, H. Hempel, H. Rodriguez-Alvarez, N. Schäfer, D. Greiner, A. Scheu, J. Lauche, C.A. Kaufmann, T. Unold, D. Abou-Ras, R. Mainz, Effect of Na presence during CuInSe 2 growth on stacking fault annihilation and electronic properties, Appl. Phys. Lett. 107 (2015) 152103. doi:10.1063/1.4933305. [7] O. Lundberg, J. Lu, A. Rockett, M. Edoff, L. Stolt, Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells, J. Phys. Chem. Solids. 64 (2003) 1499–1504. doi:10.1016/S0022-3697(03)00127-6. [8] A. Laemmle, R. Wuerz, M. Powalla, Efficiency enhancement of Cu(In,Ga)Se 2 thin-film solar cells by a post-deposition treatment with potassium fluoride, Phys. Status Solidi - Rapid Res. Lett. 7 (2013) 631– 634. doi:10.1002/pssr.201307238. [9] N. Nicoara, T. Lepetit, L. Arzel, S. Harel, N. Barreau, S. Sadewasser, Effect of the KF post-deposition treatment on grain boundary properties in Cu(In, Ga)Se2 thin films, Sci. Rep. 7 (2017) 41361. doi:10.1038/srep41361. [10] F. Pianezzi, P. Reinhard, A. Chirilă, B. Bissig, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells, Phys. Chem. Chem. Phys. 16 (2014) 8843. doi:10.1039/c4cp00614c. [11] A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nat. Mater. 12 (2013) 1107–1111. doi:10.1038/nmat3789. [12] P.M.P. Salomé, V. Fjällström, P. Szaniawski, J.P. Leitão, A. Hultqvist, P.A. Fernandes, J.P. Teixeira, B.P. Falcão, U. Zimmermann, A.F. da Cunha, M. Edoff, A comparison between thin film solar cells made from co-evaporated CuIn 1-x Ga x Se 2 using a one-stage process versus a threestage process, Prog. Photovoltaics Res. Appl. 23 (2015) 470–478. doi:10.1002/pip.2453. [13] F. Werner, M.H. Wolter, S. Siebentritt, G. Sozzi, S. Di Napoli, R. Menozzi, P. Jackson, W. Witte, R. Carron, E. Avancini, T.P. Weiss, S. Buecheler, Alkali treatments of Cu(In,Ga)Se 2 thin-film absorbers and their impact on transport barriers, Prog. Photovoltaics Res. Appl. 26 (2018) 911–923. doi:10.1002/pip.3032. [14] T.P. Weiss, S. Nishiwaki, B. Bissig, S. Buecheler, A.N. Tiwari, Voltage dependent admittance spectroscopy for the detection of near interface defect states for thin film solar cells, Phys. Chem. Chem. Phys. 19 (2017) 30410–30417. doi:10.1039/C7CP05236G. [15] S. Siebentritt, Shallow Defects in the Wide Gap Chalcopyrite CuGaSe2, in: Wide-Gap Chalcopyrites, Springer-Verlag, Berlin/Heidelberg, 2006: pp. 113–156. doi:10.1007/3-540-31293-5_7. [16] R. Mainz, E. Simsek Sanli, H. Stange, D. Azulay, S. Brunken, D. Greiner, S. Hajaj, M.D. Heinemann, C.A. Kaufmann, M. Klaus, Q.M. Ramasse, H. Rodriguez-Alvarez, A. Weber, I. Balberg, O. Millo, P.A. van Aken, D. Abou-Ras, Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells, Energy Environ. Sci. 9 (2016) 1818– 1827. doi:10.1039/C6EE00402D.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.type.programmeH2020-
local.relation.h2020715027-
dc.identifier.doi10.1016/j.tsf.2018.12.022-
dc.identifier.isi000455998000008-
item.fulltextWith Fulltext-
item.contributorDE WILD, Jessica-
item.contributorSimor, Marcel-
item.contributorBULDU KOHL, Dilara-
item.contributorKOHL, Thierry-
item.contributorBRAMMERTZ, Guy-
item.contributorMEURIS, Marc-
item.contributorPOORTMANS, Jef-
item.contributorVERMANG, Bart-
item.fullcitationDE WILD, Jessica; Simor, Marcel; BULDU KOHL, Dilara; KOHL, Thierry; BRAMMERTZ, Guy; MEURIS, Marc; POORTMANS, Jef & VERMANG, Bart (2019) Alkali treatment for single-stage co-evaporated thin CuIn0.7Ga0.3Se2 solar cells. In: THIN SOLID FILMS, 671, p. 44-48.-
item.validationecoom 2020-
item.accessRightsOpen Access-
crisitem.journal.issn0040-6090-
crisitem.journal.eissn1879-2731-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
DeWild2018_AlkaliTreatment_TSF-D-18-00933R2.pdfPeer-reviewed author version1.18 MBAdobe PDFView/Open
1-s2.0-S0040609018308319-main.pdf
  Restricted Access
Published version828.08 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

4
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

11
checked on May 16, 2024

Page view(s)

236
checked on Jul 31, 2022

Download(s)

178
checked on Jul 31, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.