Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28448
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSURESH, Sunil-
dc.contributor.authorDE WILD, Jessica-
dc.contributor.authorKOHL, Thierry-
dc.contributor.authorBULDU KOHL, Dilara-
dc.contributor.authorBRAMMERTZ, Guy-
dc.contributor.authorMEURIS, Marc-
dc.contributor.authorPOORTMANS, Jef-
dc.contributor.authorIsabella, Olindo-
dc.contributor.authorZeman, Miro-
dc.contributor.authorVERMANG, Bart-
dc.date.accessioned2019-06-18T10:07:08Z-
dc.date.available2019-06-18T10:07:08Z-
dc.date.issued2019-
dc.identifier.citationThin solid films, 669, p. 399-403-
dc.identifier.issn0040-6090-
dc.identifier.urihttp://hdl.handle.net/1942/28448-
dc.description.abstractReducing the absorber layer thickness below 1 μm for a regular copper indium gallium di-selenide (CIGS) solar cell lowers the minimum quality requirements for the absorber layer due to shorter electron diffusion length. Additionally, it reduces material costs and production time. Yet, having such a thin absorber reduces the cell efficiency significantly. This is due to incomplete light absorption and high Molybdenum/CIGS rear-surface recombination [1]. The aim of this research is to implement some innovative rear surface modifications on a 430 nm thick CIGS absorber layer to reduce both these affects: an aluminium oxide passivation layer to reduce the back-surface recombination and point contact openings using nano-particles for electrical contact. The impact of the implementation of all these rear-surface modifications on the opto-electrical properties of the CIGS solar cell will be discussed and analyzed in this paper.-
dc.description.sponsorshipThis work received funding from the European Union’s H2020 research and innovation program under grant agreement No. 715027-
dc.language.isoen-
dc.rights2018 Elsevier B.V. All rights reserved-
dc.titleA study to improve light confinement and rear-surface passivation in a thin-Cu(In, Ga)Se2 solar cell-
dc.typeJournal Contribution-
dc.identifier.epage403-
dc.identifier.spage399-
dc.identifier.volume669-
local.format.pages5-
local.bibliographicCitation.jcatA1-
dc.relation.references[1] ermang , llstr m , Gao X, Edoff M. Improved Rear Surface Passivation of Cu (In, Ga) Se2 Solar Cells: A Combination of an Al 2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts. IEEE Journal of Photovoltaics. 2014 Jan;4(1):486-92. [2] T. Plamena. (2018). Solar Frontier reaches 22.9% efficiency on thin-film CIS cell. Available: https://renewablesnow.com/news/solar-frontier-reaches-229-efficiency-on-thin-film-cis-cell-595223/ [3] Kotipalli R, Poncelet O, Li G, Zeng Y, Francis LA, Vermang B, Flandre D. Addressing the impact of rear surface passivation mechanisms on ultra-thin Cu (In, Ga) Se2 solar cell performances using SCAPS 1-D model. Solar Energy. 2017 Nov 15;157:603-13. [4] Hsu WW, Chen JY, Cheng TH, Lu SC, Ho WS, Chen YY, Chien YJ, Liu CW. Surface passivation of Cu (In, Ga) Se2 using atomic layer deposited Al2O3. Applied Physics Letters. 2012 Jan 9;100(2):023508. [5] Kotipalli R, Vermang B, Joel J, Rajkumar R, Edoff M, Flandre D. Investigating the electronic properties of Al2O3/Cu (In, Ga) Se2 interface. AIP Advances. 2015 Oct;5(10):107101. [6] Vermang B, Goverde H, Tous L, Lorenz A, Choulat P, Horzel J, John J, Poortmans J, Mertens R. Approach for Al2O3 rear surface passivation of industrial p‐ type Si PERC above 19%. Progress in Photovoltaics: Research and Applications. 2012 May;20(3):269-73. [7] Kotipalli R, Vermang B, Fjällström V, Edoff M, Delamare R, Flandre D. Influence of Ga/(Ga+ In) grading on deep‐ defect states of Cu (In, Ga) Se2 solar cells. physica status solidi (RRL)–Rapid Research Letters. 2015 Mar;9(3):157-60. [8] Wei SH, Zhang SB, Zunger A. Effects of Ga addition to CuInSe 2 on its electronic, structural, and defect properties. Applied physics letters. 1998 Jun 15;72(24):3199-201. [9] Yamada K, Hoshino N, Nakada T. Crystallographic and electrical properties of wide gap Ag (In 1− x, Ga x) Se2 thin films and solar cells. Science and Technology of Advanced Materials. 2006 Jan;7(1):42. [10] Vermang B, Fjällström V, Pettersson J, Salomé P, Edoff M. Development of rear surface passivated Cu (In, Ga) Se 2 thin film solar cells with nano-sized local rear point contacts. Solar Energy Materials and Solar cells. 2013 Oct 31;117:505-11. [11] Yin G, Steigert A, Andrae P, Goebelt M, Latzel M, Manley P, Lauermann I, Christiansen S, Schmid M. Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu (In, Ga) Se2 solar cells. Applied Surface Science. 2015 Nov 15;355:800-4. [12] Vermang B, Fjällström V, Pettersson J, Salomé P, Edoff M. Development of rear surface passivated Cu (In, Ga) Se 2 thin film solar cells with nano-sized local rear point contacts. Solar Energy Materials and Solar cells. 2013 Oct 31;117:505-11. [13] Hegedus SS, Shafarman WN. Thin‐ film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and Applications. 2004 Mar;12(2‐ 3):155-76. [14] Salomé PM, Vermang B, Ribeiro‐ Andrade R, Teixeira JP, Cunha JM, Mendes MJ, Haque S, Borme J, Águas H, Fortunato E, Martins R. Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer. Advanced Materials Interfaces. 2018 Jan;5(2):1701101. [15] Vermang B, Wätjen JT, Frisk C, Fjällström V, Rostvall F, Edoff M, Salomé P, Borme J, Nicoara N, Sadewasser S. Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu (In, Ga) Se 2 Solar Cells. IEEE Journal of Photovoltaics. 2014 Nov;4(6):1644-9. [16] Profijt HB. Plasma-surface interaction in plasma-assisted atomic layer deposition (Doctoral dissertation, PhD thesis, Eindhoven University of Technology). [17] Profijt HB, Kudlacek P, Van de Sanden MC, Kessels WM. The influence of ions and photons during plasma-assisted ALD of metal oxides. ECS Transactions. 2010 Oct 1;33(2):61-7. 8 [18] Xianfeng Z, Kobayashi T, Kurokawa Y, Yamada A. Growth of Ag (In, Ga) Se2 films by modified three-stage method and influence of annealing on performance of solar cells. Japanese Journal of Applied Physics. 2012 Oct 22;51(10S):10NC05. [19] Zhang XF, Kobayashi M. Study on growth process of Ag (In Ga) Se2 films by a three-stage coevaporation method using molecular beam epitaxy apparatus. IEEE Photonics J. 2017 Mar;9:8400109.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.type.programmeH2020-
local.relation.h2020715027-
dc.identifier.doi10.1016/j.tsf.2018.11.027-
dc.identifier.isi000453405600056-
dc.identifier.urlhttps://explore.openaire.eu/search/publication?articleId=od______2659::e8ddcf638f849035e1bd43146a527c4a-
local.uhasselt.internationalyes-
item.validationecoom 2020-
item.contributorSURESH, Sunil-
item.contributorDE WILD, Jessica-
item.contributorKOHL, Thierry-
item.contributorBULDU KOHL, Dilara-
item.contributorBRAMMERTZ, Guy-
item.contributorMEURIS, Marc-
item.contributorPOORTMANS, Jef-
item.contributorIsabella, Olindo-
item.contributorZeman, Miro-
item.contributorVERMANG, Bart-
item.fullcitationSURESH, Sunil; DE WILD, Jessica; KOHL, Thierry; BULDU KOHL, Dilara; BRAMMERTZ, Guy; MEURIS, Marc; POORTMANS, Jef; Isabella, Olindo; Zeman, Miro & VERMANG, Bart (2019) A study to improve light confinement and rear-surface passivation in a thin-Cu(In, Ga)Se2 solar cell. In: Thin solid films, 669, p. 399-403.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn0040-6090-
crisitem.journal.eissn1879-2731-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Suresh2018_ImprovedLightConfinment_TSF-D-18-00974R2.pdfPeer-reviewed author version1.44 MBAdobe PDFView/Open
1-s2.0-S0040609018307685-main.pdf
  Restricted Access
Published version832.14 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.