Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28501
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJAMIL, Asif-
dc.contributor.authorBatsikadze, Giorgi-
dc.contributor.authorHsiao-I., Kuo-
dc.contributor.authorLabruna, Ludovica-
dc.contributor.authorHasan, Alkomiet-
dc.contributor.authorPaulus, Walter-
dc.contributor.authorNitsche, Michael-
dc.date.accessioned2019-06-20T06:49:36Z-
dc.date.available2019-06-20T06:49:36Z-
dc.date.issued2017-
dc.identifier.citationJournal of Physiology, 595(4), p. 1273-1288-
dc.identifier.issn0928-4257-
dc.identifier.urihttp://hdl.handle.net/1942/28501-
dc.description.abstractContemporary non‐invasive neuromodulatory techniques, such as transcranial direct current stimulation (tDCS), have shown promising potential in both restituting impairments in cortical physiology in clinical settings, as well as modulating cognitive abilities in the healthy population. However, neuroplastic after‐effects of tDCS are highly dependent on stimulation parameters, relatively short lasting, and not expectedly uniform between individuals. The present study systematically investigates the full range of current intensity between 0.5 and 2.0 mA on left primary motor cortex (M1) plasticity, as well as the impact of individual‐level covariates on explaining inter‐individual variability. Thirty‐eight healthy subjects were divided into groups of anodal and cathodal tDCS. Five DC intensities (sham, 0.5, 1.0, 1.5 and 2.0 mA) were investigated in separate sessions. Using transcranial magnetic stimulation (TMS), 25 motor‐evoked potentials (MEPs) were recorded before, and 10 time points up to 2 h following 15 min of tDCS. Repeated‐measures ANOVAs indicated a main effect of intensity for both anodal and cathodal tDCS. With anodal tDCS, all active intensities resulted in equivalent facilitatory effects relative to sham while for cathodal tDCS, only 1.0 mA resulted in sustained excitability diminution. An additional experiment conducted to assess intra‐individual variability revealed generally good reliability of 1.0 mA anodal tDCS (ICC(2,1) = 0.74 over the first 30 min). A post hoc analysis to discern sources of inter‐individual variability confirmed a previous finding in which individual TMS SI1mV (stimulus intensity for 1 mV MEP amplitude) sensitivity correlated negatively with 1.0 mA anodal tDCS effects on excitability. Our study thus provides further insights on the extent of non‐linear intensity‐dependent neuroplastic after‐effects of anodal and cathodal tDCS.-
dc.description.sponsorshipFederal Ministry of Education and Research. Grant Number: 03IPT605E-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2016 The Authors. The Journal of Physiology 2016 The Physiological Society-
dc.subject.othertDCS; TMS; neuroplasticity-
dc.titleSystematic evaluation of the impact of stimulation intensity on neuroplastic after‐effects induced by transcranial direct current stimulation-
dc.typeJournal Contribution-
dc.identifier.epage1288-
dc.identifier.issue4-
dc.identifier.spage1273-
dc.identifier.volume595-
local.bibliographicCitation.jcatA1-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ USA-
dc.relation.referencesAmbrus, GG, Al‐Moyed, H, Chaieb, L, Sarp, L, Antal, A & Paulus, W ( 2012). The fade‐in – short stimulation – fade out approach to sham tDCS – reliable at 1 mA for naïve and experienced subjects, but not investigators. Brain Stimul 5, 499– 504. Ambrus, GG, Paulus, W & Antal, A ( 2010). Cutaneous perception thresholds of electrical stimulation methods: Comparison of tDCS and tRNS. Clin Neurophysiol 121, 1908– 1914. Bashir, S, Perez, JM, Horvath, JC, Pena‐Gomez, C, Vernet, M, Capia, A, Alonso‐Alonso, M & Pascual‐Leone, A ( 2014). Differential effects of motor cortical excitability and plasticity in young and old individuals: A transcranial magnetic stimulation (TMS) study. Front Aging Neurosci 6, 1– 13. Bastani, A & Jaberzadeh, S ( 2013). Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation. PLoS One 8, e72254. Batsikadze, G, Moliadze, V, Paulus, W, Kuo, MF & Nitsche, MA ( 2013). Partially non‐linear stimulation intensity‐dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591, 1987– 2000. Boggio, P, Khoury, L, Martins, D, Martins, O, Macedo, E & Fregni, F ( 2009). Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry 80, 444– 4447. Brunoni, AR, Valiengo, L, Baccaro, A, Zanão, TA, Oliveira, JF, Goulart, A, Boggio, PS, Lotufo, PA, Benseñor, IM & Fregni, F ( 2013). The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry 70, 383– 391. Bunse, T, Wobrock, T, Strube, W, Padberg, F, Palm, U, Falkai, P & Hasan, A ( 2014). Motor cortical excitability assessed by transcranial magnetic stimulation in psychiatric disorders: a systematic review. Brain Stimul 7, 158– 169. Chew, T, Ho, K‐A & Loo, CK ( 2015). Inter‐ and intra‐individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimul 1– 8. Cho, K, Aggleton, JP, Brown, MW & Bashir, ZI ( 2001). An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol 532, 459– 466. Cicchetti, DV ( 1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 6, 284– 290. Datta, A, Bansal, V, Diaz, J, Patel, J, Reato, D & Bikson, M ( 2009). Gyri‐precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul 2, 201– 207. Datta, A, Truong, D, Minhas, P, Parra, LC & Bikson, M ( 2012). Inter‐individual variation during transcranial direct current stimulation and normalization of dose using MRI‐derived computational models. Front Psychiatry 3, 1– 8. Doeltgen, SH & Ridding, MC ( 2011). Low‐intensity, short‐interval theta burst stimulation modulates excitatory but not inhibitory motor networks. Clin Neurophysiol 122, 1411– 1416. Flöel, A ( 2014). TDCS‐enhanced motor and cognitive function in neurological diseases. Neuroimage 85, 934– 947. Gandiga, PC, Hummel, FC & Cohen, LG ( 2006). Transcranial DC stimulation (tDCS): A tool for double‐blind sham‐controlled clinical studies in brain stimulation. Clin Neurophysiol 117, 845– 850. Groppa, S, Oliviero, A, Eisen, A, Quartarone, A, Cohen, LG, Mall, V, Kaelin‐Lang, A, Mima, T, Rossi, S, Thickbroom, GW, Rossini, PM, Ziemann, U, Valls‐Solé, J & Siebner, HR ( 2012). A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clin Neurophysiol 123, 858– 882. Guleyupoglu, B, Febles, N, Minhas, P, Hahn, C & Bikson, M ( 2014). Reduced discomfort during high‐definition transcutaneous stimulation using 6% benzocaine. Front Neuroeng 7, 28. Hamada, M, Murase, N, Hasan, A, Balaratnam, M & Rothwell, JC ( 2013). The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23, 1593– 1605. Herbsman, T, Forster, L, Molnar, C, Dougherty, R, Christie, D, Koola, J, Ramsey, D, Morgan, PS, Bohning, DE, George, MS & Nahas, Z ( 2009). Motor threshold in transcranial magnetic stimulation: The impact of white matter fiber orientation and skull‐to‐cortex distance. Hum Brain Mapp 30, 2044– 2055. Jennum, P, Winkel, H & Fuglsang‐Frederiksen, A ( 1995). Repetitive magnetic stimulation and motor evoked potentials. Electroencephalogr Clin Neurophysiol Mot Control 97, 96– 101. Kidgell, DJ, Daly, RM, Young, K, Lum, J, Tooley, G, Jaberzadeh, S, Zoghi, M & Pearce, AJ ( 2013). Different current intensities of anodal transcranial direct current stimulation do not differentially modulate motor cortex plasticity. Neural Plast 2013, 1– 9. Kozel, FA, Nahas, ZH, DeBrux, C, Molloy, M, Lorberbaum, JP, Bohning, DE, Risch, SC & George, MS ( 2000). How coil–cortex distance relates to age, motor threshold, and antidepressant response to repetitive transcranial magnetic stimulation. J Neuropsychiatry Clin Neurosci 12, 376– 384. Krause, B, Márquez‐Ruiz, J & Cohen Kadosh, R ( 2013). The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 7, 602. Kuo, H‐I, Bikson, M, Datta, A, Minhas, P, Paulus, W, Kuo, M‐F & Nitsche, MA ( 2013). Comparing cortical plasticity induced by conventional and high‐definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimul 6, 644– 648. Kuo, M‐F & Nitsche, MA ( 2012). Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci 43, 192– 199. Kuo, M‐F, Paulus, W & Nitsche, MA ( 2006). Sex differences in cortical neuroplasticity in humans. Neuroreport 17, 1703– 1707. Kuo, M‐F, Paulus, W & Nitsche, MA ( 2014). Therapeutic effects of non‐invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage 85, 948– 960. Labruna, L, Jamil, A, Fresnoza, S, Batsikadze, G, Kuo, M‐F, Vanderschelden, B, Ivry, RB & Nitsche, MA ( 2015). Efficacy of anodal transcranial direct current stimulation is related to sensitivity to transcranial magnetic stimulation. Brain Stimul 9, 8– 15. Liebetanz, D, Nitsche, MA, Tergau, F & Paulus, W ( 2002). Pharmacological approach to the mechanisms of transcranial DC‐stimulation‐induced after‐effects of human motor cortex excitability. Brain 125, 2238– 2247. Lisman, JE ( 2001). Three Ca2+ levels affect plasticity differently: The LTP zone, the LTD zone and no man's land. J Physiol 532, 285. López‐Alonso, V, Cheeran, B, Río‐Rodríguez, D & Fernández‐Del‐Olmo, M ( 2014). Inter‐individual variability in response to non‐invasive brain stimulation paradigms. Brain Stimul 7, 372– 380. López‐Alonso, V, Fernández‐del‐Olmo, M, Costantini, A, Gonzalez‐Henriquez, JJ & Cheeran, B ( 2015). Intra‐individual variability in the response to anodal transcranial direct current stimulation. Clin Neurophysiol 126, 2342– 2347. McConnell, KA, Nahas, Z, Shastri, A, Lorberbaum, JP, Kozel, FA, Bohning, DE & George, MS ( 2001). The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: A replication in healthy adults comparing two methods of assessing the distance to cortex. Biol Psychiatry 49, 454– 459. McFadden, JL, Borckardt, JJ, George, MS & Beam, W ( 2011). Reducing procedural pain and discomfort associated with transcranial direct current stimulation. Brain Stimul 4, 38– 42. Moliadze, V, Atalay, D, Antal, A & Paulus, W ( 2012). Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul 5, 505– 511. Moliadze, V, Schmanke, T, Andreas, S, Lyzhko, E, Freitag, CM & Siniatchkin, M ( 2015). Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents. Clin Neurophysiol 126, 1392– 1399. Monte‐Silva, K, Kuo, M‐F, Hessenthaler, S, Fresnoza, S, Liebetanz, D, Paulus, W & Nitsche, MA ( 2013). Induction of late LTP‐like plasticity in the human motor cortex by repeated non‐invasive brain stimulation. Brain Stimul 6, 424– 432. Monte‐Silva, K, Kuo, M‐F, Liebetanz, D, Paulus, W & Nitsche, M ( 2010). Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J Neurophysiol 103, 1735– 1740. Nitsche, MA, Cohen, LG, Wassermann, EM, Priori, A, Lang, N, Antal, A, Paulus, W, Hummel, F, Boggio, PS, Fregni, F & Pascual‐Leone, A ( 2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimul 1, 206– 223. Nitsche, MA, Doemkes, S, Karakose, T, Antal A, , Liebetanz, D, Lang, N, Tergau, F, Paulus, W, Karaköse, T, Antal, A, Liebetanz, D, Lang, N, Tergau, F & Paulus, W ( 2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97, 3109– 3117. Nitsche, MA, Fricke, K, Henschke, U, Schlitterlau, A, Liebetanz, D, Lang, N, Henning, S, Tergau, F & Paulus, W ( 2003a). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553, 293– 301. Nitsche, MA, Liebetanz, D, Schlitterlau, A, Henschke, U, Fricke, K, Frommann, K, Lang, N, Henning, S, Paulus, W & Tergau, F ( 2004). GABAergic modulation of DC stimulation‐induced motor cortex excitability shifts in humans. Eur J Neurosci 19, 2720– 2726. Nitsche, MA, Nitsche, MS, Klein, CC, Tergau, F, Rothwell, JC & Paulus, W ( 2003b). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114, 600– 604. Nitsche, MA & Paulus, W ( 2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527, 633– 639. Nitsche, MA & Paulus, W ( 2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899– 1901. Oldfield, RC ( 1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9, 97– 113. Opitz, A, Paulus, W, Will, A & Thielscher, A ( 2015). Anatomical determinants of the electric field during transcranial direct current stimulation. Neuroimage 109, 2. Pascual‐Leone, A, Valls‐sole, J, Wassermann, EM & Hallett, M ( 1994). Responses to rapid‐rate transcranial magnetic stimulation of the human motor cortex. Brain 117, 847– 858. Polanía, R, Nitsche, MA & Paulus, W ( 2011a). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 32, 1236– 1249. Polanía, R, Paulus, W & Nitsche, MA ( 2011b). Modulating cortico‐striatal and thalamo‐cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 32, 1236– 1249. Pozo, K & Goda, Y ( 2010). Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66, 337– 351. Ridding, MC & Ziemann, U ( 2010). Determinants of the induction of cortical plasticity by non‐invasive brain stimulation in healthy subjects. J Physiol 588, 2291– 2304. Rioult‐Pedotti, M‐S, Donoghue, JP & Dunaevsky, A ( 2007). Plasticity of the synaptic modification range. J Neurophysiol 98, 3688– 3695. Shekhawat, GS, Stinear, CM & Searchfield, GD ( 2013). Transcranial direct current stimulation intensity and duration effects on tinnitus suppression. Neurorehabil Neural Repair 27, 164– 172. Shin, Y‐I, Foerster, Á & Nitsche, MA ( 2015). Transcranial direct current stimulation (tDCS) – application in neuropsychology. Neuropsychologia 69, 154– 175. Shrout, PE & Fleiss, JL ( 1979). Intraclass correlations: Uses in assessing rater reliability. Psychol Bull 86, 420– 428. Stagg, CJ & Nitsche, MA ( 2011). Physiological basis of transcranial direct current stimulation. Neurosci 17, 37– 53. Stefan, K, Kunesch, E, Cohen, LG, Benecke, R & Classen, J ( 2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123, 572– 584. Strube, W, Bunse, T, Malchow, B & Hasan, A ( 2015). Efficacy and interindividual variability in motor‐cortex plasticity following anodal tDCS and paired‐associative stimulation. Neural Plast 2015, 1– 10. Minde, D, Klaming, L & Weda, H ( 2013). Pinpointing moments of high anxiety during an MRI examination. Int J Behav Med 1– 9. Vaseghi, B, Zoghi, M & Jaberzadeh, S ( 2015). Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception – a double‐blind randomised sham‐controlled study. Eur J Neurosci 42, 2426– 2437. Wassermann, EM, Greenberg, BD, Nguyen, MB & Murphy, DL ( 2001). Motor cortex excitability correlates with an anxiety‐related personality trait. Biol Psychiatry 50, 377– 382. Wiethoff, S, Hamada, M & Rothwell, JC ( 2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul 7, 468– 475. Woods, AJ, Antal, A, Bikson, M, Boggio, PS, Brunoni, AR, Celnik, P, Cohen, LG, Fregni, F, Herrmann, CS, Kappenman, ES, Knotkova, H, Liebetanz, D, Miniussi, C, Miranda, PC, Paulus, W, Priori, A, Reato, D, Stagg, C, Wenderoth, N & Nitsche, MA ( 2015). A technical guide to tDCS, and related non‐invasive brain stimulation tools. Clin Neurophysiol 127, 1031– 1048.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1113/JP272738-
dc.identifier.isi000394581400030-
dc.identifier.eissn1469-7793-
local.provider.typeWeb of Science-
item.accessRightsRestricted Access-
item.fullcitationJAMIL, Asif; Batsikadze, Giorgi; Hsiao-I., Kuo; Labruna, Ludovica; Hasan, Alkomiet; Paulus, Walter & Nitsche, Michael (2017) Systematic evaluation of the impact of stimulation intensity on neuroplastic after‐effects induced by transcranial direct current stimulation. In: Journal of Physiology, 595(4), p. 1273-1288.-
item.fulltextWith Fulltext-
item.contributorJAMIL, Asif-
item.contributorBatsikadze, Giorgi-
item.contributorHsiao-I., Kuo-
item.contributorLabruna, Ludovica-
item.contributorHasan, Alkomiet-
item.contributorPaulus, Walter-
item.contributorNitsche, Michael-
crisitem.journal.issn0928-4257-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

110
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

250
checked on May 10, 2024

Page view(s)

186
checked on Sep 7, 2022

Download(s)

164
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.