Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28510
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVANHOENSHOVEN, Frank-
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorBIELEN, Samantha-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2019-06-24T07:14:09Z-
dc.date.available2019-06-24T07:14:09Z-
dc.date.issued2018-
dc.identifier.citationCzarnowski, I Howlett, RJ Jain, LC (Ed.). INTELLIGENT DECISION TECHNOLOGIES 2017, KES-IDT 2017, PT I, SPRINGER-VERLAG BERLIN,p. 255-264-
dc.identifier.isbn9783319594200-
dc.identifier.issn2190-3018-
dc.identifier.urihttp://hdl.handle.net/1942/28510-
dc.description.abstractIn this paper, we address some shortcomings of Fuzzy Cognitive Maps (FCMs) in the context of time series prediction. The transparent and comprehensive nature of FCMs provides several advantages that are appreciated for decision-maker. In spite of this fact, FCMs also have some features that are hard to match with time series prediction, resulting in a prediction power that is probably not as extensive as other techniques can boast. By introducing some ideas from ARIMA models, this paper aims at overcoming some of these concerns. The proposed model is evaluated on a real-world case study, captured in a dataset of crime registrations in the Belgian province of Antwerp. The results have shown that our proposal is capable of predicting multiple steps ahead in an entire system of fluctuating time series. However, these enhancements come at the cost of a lower prediction accuracy and less transparency than standard FCM models can achieve. Therefore, further research is required to provide a comprehensive solution.-
dc.language.isoen-
dc.publisherSPRINGER-VERLAG BERLIN-
dc.relation.ispartofseriesSmart Innovation Systems and Technologies-
dc.rightsSpringer International Publishing AG 2018-
dc.subject.otherTime Series; Weight Matrix; Forecast Model; Recurrent Neural Network; ARIMA Model-
dc.titleFuzzy Cognitive Maps Employing ARIMA Components for Time Series Forecasting-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsCzarnowski, I Howlett, RJ Jain, LC-
local.bibliographicCitation.conferencedateJUN 21-23, 2017-
local.bibliographicCitation.conferencename9th KES International Conference on Intelligent Decision Technologies (KES-IDT)-
local.bibliographicCitation.conferenceplaceAlgarve, PORTUGAL-
dc.identifier.epage264-
dc.identifier.spage255-
dc.identifier.volume72-
local.format.pages10-
local.bibliographicCitation.jcatC1-
dc.description.notes[Vanhoenshoven, Frank; Napoles, Gonzalo; Bielen, Samantha; Vanhoof, Koen] Hasselt Univ, Fac Business Econ, Agoralaan, B-3590 Diepenbeek, Belgium.-
local.publisher.placeBERLIN-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1007/978-3-319-59421-7_24-
dc.identifier.isi000432721700024-
local.bibliographicCitation.btitleINTELLIGENT DECISION TECHNOLOGIES 2017, KES-IDT 2017, PT I-
item.validationecoom 2019-
item.contributorVANHOENSHOVEN, Frank-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorBIELEN, Samantha-
item.contributorVANHOOF, Koen-
item.fullcitationVANHOENSHOVEN, Frank; NAPOLES RUIZ, Gonzalo; BIELEN, Samantha & VANHOOF, Koen (2018) Fuzzy Cognitive Maps Employing ARIMA Components for Time Series Forecasting. In: Czarnowski, I Howlett, RJ Jain, LC (Ed.). INTELLIGENT DECISION TECHNOLOGIES 2017, KES-IDT 2017, PT I, SPRINGER-VERLAG BERLIN,p. 255-264.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
vanhoenshoven2017.pdf
  Restricted Access
Published version239.77 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.