Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/28511
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tabuada, Goncalo | - |
dc.contributor.author | VAN DEN BERGH, Michel | - |
dc.date.accessioned | 2019-06-24T07:30:55Z | - |
dc.date.available | 2019-06-24T07:30:55Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | GEOMETRY & TOPOLOGY, 22(5), p. 3003-3048 | - |
dc.identifier.issn | 1465-3060 | - |
dc.identifier.uri | http://hdl.handle.net/1942/28511 | - |
dc.description.abstract | Using the recent theory of noncommutative motives, we compute the additive invariants of orbifolds (equipped with a sheaf of Azumaya algebras) using solely "fixed-point data". As a consequence, we recover, in a unified and conceptual way, the original results of Vistoli concerning algebraic K-theory, of Baranovsky concerning cyclic homology, of the second author and Polishchuk concerning Hochschild homology, and of Baranovsky and Petrov, and Caldararu and Arinkin (unpublished), concerning twisted Hochschild homology; in the case of topological Hochschild homology and periodic topological cyclic homology, the aforementioned computation is new in the literature. As an application, we verify Grothendieck's standard conjectures of type C+ and D, as well as Voevodsky's smash-nilpotence conjecture, in the case of "low-dimensional" orbifolds. Finally, we establish a result of independent interest concerning nilpotency in the Grothendieck ring of an orbifold. | - |
dc.language.iso | en | - |
dc.publisher | GEOMETRY & TOPOLOGY PUBLICATIONS | - |
dc.subject.other | orbifold; algebraic K–theory; cyclic homology; topological Hochschild homology; Azumaya algebra; standard conjectures; noncommutative algebraic geometry | - |
dc.title | Additive invariants of orbifolds | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 3048 | - |
dc.identifier.issue | 5 | - |
dc.identifier.spage | 3003 | - |
dc.identifier.volume | 22 | - |
local.format.pages | 46 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Tabuada, Goncalo] MIT, Dept Math, Cambridge, MA 02139 USA. [Tabuada, Goncalo] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Lisbon, Portugal. [Tabuada, Goncalo] Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, Lisbon, Portugal. [Van den Bergh, Michel] Univ Hasselt, Dept Math, Diepenbeek, Belgium. | - |
local.publisher.place | COVENTRY | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.2140/gt.2018.22.3003 | - |
dc.identifier.isi | 000434786500012 | - |
item.validation | ecoom 2019 | - |
item.accessRights | Restricted Access | - |
item.fulltext | With Fulltext | - |
item.fullcitation | Tabuada, Goncalo & VAN DEN BERGH, Michel (2018) Additive invariants of orbifolds. In: GEOMETRY & TOPOLOGY, 22(5), p. 3003-3048. | - |
item.contributor | Tabuada, Goncalo | - |
item.contributor | VAN DEN BERGH, Michel | - |
crisitem.journal.issn | 1465-3060 | - |
crisitem.journal.eissn | 1364-0380 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tabuada2018.pdf Restricted Access | Published version | 663.57 kB | Adobe PDF | View/Open Request a copy |
SCOPUSTM
Citations
11
checked on Oct 5, 2025
WEB OF SCIENCETM
Citations
13
checked on Oct 9, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.