Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28514
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCAROLUS, Jorne-
dc.contributor.authorMERCKX, Tamara-
dc.contributor.authorPUROHIT, Zeel-
dc.contributor.authorTripathi, Brijesh-
dc.contributor.authorBOYEN, Hans-Gerd-
dc.contributor.authorAERNOUTS, Tom-
dc.contributor.authorDE CEUNINCK, Ward-
dc.contributor.authorCONINGS, Bert-
dc.contributor.authorDAENEN, Michael-
dc.date.accessioned2019-06-24T11:02:17Z-
dc.date.available2019-06-24T11:02:17Z-
dc.date.issued2019-
dc.identifier.citationSolar RRL , 3 (10) (Art N° 1900226).-
dc.identifier.issn2367-198X-
dc.identifier.urihttp://hdl.handle.net/1942/28514-
dc.description.abstractIn recent years, metal halide perovskite solar cells have become a major competitor in the run to lower the levelized cost of electricity (LCOE) of photovoltaic (PV) systems. Commercialization of this new technology mainly depends on the long-term stability of such devices, for which potential-induced degradation (PID) may represent a factor of detrimental impact. Since PID can trigger rapid and significant losses in PV systems, it is generally considered among the most critical failure modes with a high financial repercussion. In this work, we report results of PID tests on perovskite solar cells for the very first time. The solar cells are found to be extremely susceptible to PID: 18 hours of high voltage stress according to the PID standard IEC62804 shows a performance degradation of up to 95%, which mainly resulted from a decrease in short circuit current. Our results also uncover near full PID recoverability and pave the way towards further research into its mechanisms, kinetics, and mitigation.-
dc.description.sponsorshipThis study has received funding from the project PV OpMaat, financed by the cross border collaboration program Interreg V Flanders-Netherlands with financial support of the European Funds for Regional Development. B.C. is a postdoctoral fellow of the Research Fund Flanders (FWO).-
dc.language.isoen-
dc.subject.otherhigh voltage stress, photovoltaic module, potential-induced degradation (PID), perovskite solar cell, sodium-
dc.titlePotential-Induced Degradation and Recovery of Perovskite Solar Cells-
dc.typeJournal Contribution-
dc.identifier.issue10-
dc.identifier.volume3-
local.bibliographicCitation.jcatA1-
dc.description.notesDaenen, M (reprint author), Hasselt Univ, Inst Mat Res IMO, B-3590 Diepenbeek, Belgium. Hasselt Univ, IMOMEC, B-3590 Diepenbeek, Belgium. IMEC VZW, B-3590 Diepenbeek, Belgium. michael.daenen@uhasselt.be-
dc.relation.references1. Park, N.-G. Halide perovskite photovoltaics: History, progress, and perspectives. MRS Bull. (2018), 43 (7), 527–533. 2. Yang, T.C.-J., Fiala, P., Jeangros, Q., and Ballif, C. High-Bandgap Perovskite Materials for Multijunction Solar Cells. Joule (2018), 2 (8), 1421–1436. 3. Luo, W., Khoo, Y.S., Hacke, P., Naumann, V., Lausch, D., Harvey, S.P., Singh, J.P., Chai, J., Wang, Y., Aberle, A.G., and Ramakrishna, S. Potential-induced degradation in photovoltaic modules: a critical review. Energy Environ. Sci. (2017), 10 (1), 43–68. 4. Yamaguchi, S., Jonai, S., Hara, K., Komaki, H., Shimizu-Kamikawa, Y., Shibata, H., Niki, S., Kawakami, Y., and Masuda, A. Potential-induced degradation of Cu(In,Ga)Se 2 photovoltaic modules. Jpn. J. Appl. Phys. (2015), 54 (8S1), 08KC13. 5. Naumann, V., Lausch, D., Hähnel, A., Bauer, J., Breitenstein, O., Graff, A., Werner, M., Swatek, S., Großer, S., Bagdahn, J., and Hagendorf, C. Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells. Sol. Energy Mater. Sol. Cells (2014), 120, 383–389. 6. Bi, C., Zheng, X., Chen, B., Wei, H., and Huang, J. Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates: Mysterious Enhancement of Device Efficiency Revealed. ACS Energy Lett. (2017), 2 (6), 1400–1406. 7. Qiu, W., Ray, A., Jaysankar, M., Merckx, T., Bastos, J.P., Cheyns, D., Gehlhaar, R., Poortmans, J., and Heremans, P. An Interdiffusion Method for Highly Performing Cesium/Formamidinium Double Cation Perovskites. Adv. Funct. Mater. (2017), 27 (28), 1700920. 8. International Electrotechnical Commission (IEC) 62804: 1st edn, 2014. Test methods for the detection of potential-induced degradation – Part 1: Crystalline silicon. 9. Jena, A.K., Ikegami, M., and Miyasaka, T. Severe Morphological Deformation of Spiro-OMeTAD in (CH 3 NH 3 )PbI 3 Solar Cells at High Temperature. ACS Energy Lett. (2017), 2 (8), 1760–1761. 10. Pingel, S., Frank, O., Winkler, M., Daryan, S., Geipel, T., Hoehne, H., and Berghold, J. Potential induced degradation of solar cells and panels. Proc. 35th IEEE Photovolt. Spec. Conf. (IEEE PVSC) (2010), 2817–2822. 11. Fjallstrom, V., Salome, P.M.P., Hultqvist, A., Edoff, M., Jarmar, T., Aitken, B.G., Zhang, K., Fuller, K., and Williams, C.K. Potential-Induced Degradation of CuInGaSe2 Thin Film Solar Cells. IEEE J. Photovoltaics (2013), 3 (3), 1090–1094. 12. Bu, T., Liu, X., Zhou, Y., Yi, J., Huang, X., Luo, L., Xiao, J., Ku, Z., Peng, Y., Huang, F., Cheng, Y.-B., and Zhong, J. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. (2017), 10 (12), 2509–2515. 13. Lee, D.S., Yun, J.S., Kim, J., Soufiani, A.M., Chen, S., Cho, Y., Deng, X., Seidel, J., Lim, S., Huang, S., and Ho-Baillie, A.W.Y. Passivation of Grain Boundaries by Phenethylammonium in Formamidinium-Methylammonium Lead Halide Perovskite Solar Cells. ACS Energy Lett. (2018), 3 (3), 647–654. 14. Tai, Q., Guo, X., Tang, G., You, P., Ng, T.-W., Shen, D., Cao, J., Liu, C.-K., Wang, N., Zhu, Y., Lee, C.-S., and Yan, F. Antioxidant Grain Passivation for Air-Stable Tin-Based Perovskite Solar Cells. Angew. Chemie Int. Ed. (2019), 58 (3), 806–810. 15. Cho, Y., Soufiani, A.M., Yun, J.S., Kim, J., Lee, D.S., Seidel, J., Deng, X., Green, M.A., Huang, S., and Ho-Baillie, A.W.Y. Mixed 3D-2D Passivation Treatment for Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells for Higher Efficiency and Better Stability. Adv. Energy Mater. (2018), 8 (20), 1703392.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusIn Press-
local.bibliographicCitation.artnr1900226-
dc.identifier.doi10.1002/solr.201900226-
dc.identifier.isi000490744800002-
item.validationecoom 2020-
item.contributorCAROLUS, Jorne-
item.contributorMERCKX, Tamara-
item.contributorPUROHIT, Zeel-
item.contributorTripathi, Brijesh-
item.contributorBOYEN, Hans-Gerd-
item.contributorAERNOUTS, Tom-
item.contributorDE CEUNINCK, Ward-
item.contributorCONINGS, Bert-
item.contributorDAENEN, Michael-
item.accessRightsRestricted Access-
item.fullcitationCAROLUS, Jorne; MERCKX, Tamara; PUROHIT, Zeel; Tripathi, Brijesh; BOYEN, Hans-Gerd; AERNOUTS, Tom; DE CEUNINCK, Ward; CONINGS, Bert & DAENEN, Michael (2019) Potential-Induced Degradation and Recovery of Perovskite Solar Cells. In: Solar RRL , 3 (10) (Art N° 1900226)..-
item.fulltextWith Fulltext-
crisitem.journal.issn2367-198X-
crisitem.journal.eissn2367-198X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Carolus_et_al-2019-Solar_RRL.pdf
  Restricted Access
Peer-reviewed author version548.64 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

2
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

19
checked on Apr 30, 2024

Page view(s)

178
checked on Jun 9, 2022

Download(s)

136
checked on Jun 9, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.