Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/28567
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BELMANS, Pieter | - |
dc.contributor.author | PRESOTTO, Dennis | - |
dc.date.accessioned | 2019-07-01T10:52:30Z | - |
dc.date.available | 2019-07-01T10:52:30Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 98(1), p. 85-103 | - |
dc.identifier.issn | 0024-6107 | - |
dc.identifier.uri | http://hdl.handle.net/1942/28567 | - |
dc.description.abstract | Recently de Thanhoffer de Volcsey and Van den Bergh classified the Euler forms on a free abelian group of rank 4 having the properties of the Euler form of a smooth projective surface. There are two types of solutions: one corresponding to P1xP1 (and non-commutative quadrics), and an infinite family indexed by the natural numbers. For m=0,1 there are commutative and non-commutative surfaces having this Euler form, whilst for m2 there are no commutative surfaces. In this paper, we construct sheaves of maximal orders on surfaces having these Euler forms, giving a geometric construction for their numerical blowups. | - |
dc.description.sponsorship | FWO PhD fellowship | - |
dc.language.iso | en | - |
dc.publisher | WILEY | - |
dc.rights | 2018 London Mathematical Society | - |
dc.subject.other | Mathematics | - |
dc.title | Construction of non-commutative surfaces with exceptional collections of length 4 | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 103 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 85 | - |
dc.identifier.volume | 98 | - |
local.format.pages | 19 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Belmans, Pieter] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany. [Presotto, Dennis] Univ Hasselt, Agoralaan, B-3590 Diepenbeek, Belgium. | - |
local.publisher.place | HOBOKEN | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1112/jlms.12126 | - |
dc.identifier.isi | 000440843600005 | - |
item.contributor | BELMANS, Pieter | - |
item.contributor | PRESOTTO, Dennis | - |
item.fullcitation | BELMANS, Pieter & PRESOTTO, Dennis (2018) Construction of non-commutative surfaces with exceptional collections of length 4. In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 98(1), p. 85-103. | - |
item.accessRights | Restricted Access | - |
item.fulltext | With Fulltext | - |
item.validation | ecoom 2019 | - |
crisitem.journal.issn | 0024-6107 | - |
crisitem.journal.eissn | 1469-7750 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Belmans_et_al-2018-Journal_of_the_London_Mathematical_Society.pdf Restricted Access | Published version | 392.46 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.