Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28567
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBELMANS, Pieter-
dc.contributor.authorPRESOTTO, Dennis-
dc.date.accessioned2019-07-01T10:52:30Z-
dc.date.available2019-07-01T10:52:30Z-
dc.date.issued2018-
dc.identifier.citationJOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 98(1), p. 85-103-
dc.identifier.issn0024-6107-
dc.identifier.urihttp://hdl.handle.net/1942/28567-
dc.description.abstractRecently de Thanhoffer de Volcsey and Van den Bergh classified the Euler forms on a free abelian group of rank 4 having the properties of the Euler form of a smooth projective surface. There are two types of solutions: one corresponding to P1xP1 (and non-commutative quadrics), and an infinite family indexed by the natural numbers. For m=0,1 there are commutative and non-commutative surfaces having this Euler form, whilst for m2 there are no commutative surfaces. In this paper, we construct sheaves of maximal orders on surfaces having these Euler forms, giving a geometric construction for their numerical blowups.-
dc.description.sponsorshipFWO PhD fellowship-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2018 London Mathematical Society-
dc.subject.otherMathematics-
dc.titleConstruction of non-commutative surfaces with exceptional collections of length 4-
dc.typeJournal Contribution-
dc.identifier.epage103-
dc.identifier.issue1-
dc.identifier.spage85-
dc.identifier.volume98-
local.format.pages19-
local.bibliographicCitation.jcatA1-
dc.description.notes[Belmans, Pieter] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany. [Presotto, Dennis] Univ Hasselt, Agoralaan, B-3590 Diepenbeek, Belgium.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1112/jlms.12126-
dc.identifier.isi000440843600005-
item.contributorBELMANS, Pieter-
item.contributorPRESOTTO, Dennis-
item.fullcitationBELMANS, Pieter & PRESOTTO, Dennis (2018) Construction of non-commutative surfaces with exceptional collections of length 4. In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 98(1), p. 85-103.-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
item.validationecoom 2019-
crisitem.journal.issn0024-6107-
crisitem.journal.eissn1469-7750-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Belmans_et_al-2018-Journal_of_the_London_Mathematical_Society.pdf
  Restricted Access
Published version392.46 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.