Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28621
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRIGHETTO, Ana-
dc.contributor.authorRamires, Thiago G.-
dc.contributor.authorNakamura, Luiz R.-
dc.contributor.authorCastanho, Pedro L. D. B.-
dc.contributor.authorFAES, Christel-
dc.contributor.authorSavian, Taciana V.-
dc.date.accessioned2019-07-04T12:27:25Z-
dc.date.available2019-07-04T12:27:25Z-
dc.date.issued2019-
dc.identifier.citationJournal of Applied Statistics, 46 (1), p. 1-12-
dc.identifier.issn0266-4763-
dc.identifier.urihttp://hdl.handle.net/1942/28621-
dc.description.abstractThe cultivation of sugar cane has been gaining great focus in several countries due to its diversity of use. The modernization of agriculture has allowed high productivity, which is affected by the invasion of weeds. With sustainable agriculture, the use of herbicides has been increasingly avoided in society, requiring more effective weed control methods. In this paper, we propose a statistical model capable of identifying the invasion of weeds in the field, using four color spectra as regressor variables obtained by a multispectral camera mounted on an unmanned aerial vehicle. With the exact identification of the weed infestation, it is possible to carry out the management in the field with herbicide applications in the exact places, thus avoiding the increase of the cost of production or even dispensing with the use of herbicides, effecting the mechanical removal of them. Results show that in the experimental field, it was possible to reduce herbicide spraying by 57%.-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS LTD-
dc.rightsInforma UK Limited, trading as Taylor & Francis Group-
dc.subject.otherGAMLSS-
dc.subject.othermultinomial logistic regression-
dc.subject.othermodern agriculture-
dc.subject.otherstatistical modeling-
dc.subject.otherweed management-
dc.titlePredicting weed invasion in a sugarcane cultivar using multispectral image-
dc.typeJournal Contribution-
dc.identifier.epage12-
dc.identifier.issue1-
dc.identifier.spage1-
dc.identifier.volume46-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notes[Righetto, Ana J.; Ramires, Thiago G.; Savian, Taciana V.] Univ Sao Paulo, Escola Super Agr Luiz de Queiroz, Dept Ciencias Exatas, Piracicaba, Brazil. [Righetto, Ana J.; Ramires, Thiago G.; Faes, Christel] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat, Hasselt, Belgium. [Nakamura, Luiz R.] Univ Fed Santa Catarina, Dept Informat & Estat, Florianopolis, SC, Brazil. [Castanho, Pedro L. D. B.] Raizen, Piracicaba, Brazil.-
local.publisher.placeABINGDON-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/02664763.2018.1450362-
dc.identifier.isi000449972800001-
dc.identifier.eissn1360-0532-
local.uhasselt.internationalyes-
item.validationecoom 2019-
item.contributorRIGHETTO, Ana-
item.contributorRamires, Thiago G.-
item.contributorNakamura, Luiz R.-
item.contributorCastanho, Pedro L. D. B.-
item.contributorFAES, Christel-
item.contributorSavian, Taciana V.-
item.fullcitationRIGHETTO, Ana; Ramires, Thiago G.; Nakamura, Luiz R.; Castanho, Pedro L. D. B.; FAES, Christel & Savian, Taciana V. (2019) Predicting weed invasion in a sugarcane cultivar using multispectral image. In: Journal of Applied Statistics, 46 (1), p. 1-12.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn0266-4763-
crisitem.journal.eissn1360-0532-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
righetto2018.pdf
  Restricted Access
Published version3.39 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.