Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28653
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHAELDERMANS, Tom-
dc.contributor.authorLATAF, Amine-
dc.contributor.authorVANROELEN, Giovanni-
dc.contributor.authorSAMYN, Pieter-
dc.contributor.authorVANDAMME, Dries-
dc.contributor.authorCUYPERS, Ann-
dc.contributor.authorVANREPPELEN, Kenny-
dc.contributor.authorSCHREURS, Sonja-
dc.date.accessioned2019-07-08T14:44:49Z-
dc.date.available2019-07-08T14:44:49Z-
dc.date.issued2019-
dc.identifier.citationPOWDER TECHNOLOGY, 354, p. 392-401-
dc.identifier.issn0032-5910-
dc.identifier.urihttp://hdl.handle.net/1942/28653-
dc.description.abstractFive models that predict the Mean Residence Time (MRT) of solids in a rotary kiln are tested on three materials and validated experimentally. Furthermore, the influence of the kiln rotational speed and incline on the MRT was investigated. Determination and modelling of the MRT in pilot-scale reactors (length/diameter = 10.5) without a discharge dam, has not been studied yet. The prediction of the MRT with existing models gave poor results, therefore adaptions were necessary. The Saeman's model that was corrected with a new boundary condition decreased the mean absolute error on the experimental results from 54.5% to 15.3%. While the empirically corrected models of Saeman, Sullivan, Chatterjee and U.S. geological survey predicted the solid's MRT with an error <10% for kiln inclinations <1°. It was concluded that the MRT and the kiln's rotation relate inversely proportional, while the kiln's inclination relates logarithmically to the MRT.-
dc.description.sponsorshipThis work was supported by Vlaams Agentschap Innoveren en Ondernemen (VLAIO) [BM20160604] and European Institute of Technology (EIT).-
dc.language.isoen-
dc.subject.otherRotary kiln; Mean residence time; Solid materials; Numerical modelling-
dc.titleNumerical prediction of the mean residence time of solid materials in a pilot-scale rotary kiln-
dc.typeJournal Contribution-
dc.identifier.epage401-
dc.identifier.spage392-
dc.identifier.volume354-
local.bibliographicCitation.jcatA1-
dc.description.notesHaeldermans, T (reprint author), Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium. tom.haeldermans@uhasselt.be-
dc.relation.references[1] M. Danish, S. Kumar, S. Kumar, Exact analytical solution for the bed depth profile ofsolidsflowing in a rotary kiln, Powder Technol. 230 (2012) 29–35,https://doi.org/10.1016/j.powtec.2012.06.042.[2] T. Cao, F. Chen, J. Meng, Environmental effects influence of pyrolysis temperatureand residence time on available nutrients for biochars derived from various bio-mass, Energy Sour. Part A Recover. Util. Environ. Eff. 40 (2018) 413–419,https://doi.org/10.1080/15567036.2016.1225137.[3] M. Tripathi, J.N. Sahu, P. Ganesan, Effect of process parameters on production of bio-char from biomass waste through pyrolysis: a review, Renew. Sust. Energ. Rev. 55(2016) 467–481,https://doi.org/10.1016/j.rser.2015.10.122.[4] B. Zhao, D.O. Connor, J. Zhang, T. Peng, Z. Shen, D.C.W. Tsang, D. Hou, Effect of pyrol-ysis temperature, heating rate, and residence time on rapeseed stem derived bio-char, J. Clean. Prod. 174 (2018) 977–987,https://doi.org/10.1016/j.jclepro.2017.11.013.[5] Y.X. Liu, E. Specht, Mean residence time and hold-up of solids in rotary kilns, Chem.Eng. Sci. 61 (2006) 5176–5181,https://doi.org/10.1016/j.ces.2006.03.054.[6]W.C. Saeman, Passage of solids through rotary kilns, Chem. Eng. Prog. 47 (1951)508–514.[7] S. Das Gupta, D.V. Khakhar, S.K. Bhatia, Axial transport of granular part 1: theorysolids in horizontal rotating cylinders, Powder Technol. 67 (1991) 145–151,https://doi.org/10.1016/0032-5910(91)80151-8.[8] R. Hogg, K. Shoji, L.G. Austin, Axial transport of dry powders in horizontal rotatingcylinders, Powder Technol. 9 (1974) 99–106,https://doi.org/10.1016/0032-5910(74)85013-8.[9] P.S.T. Sai, G.D. Surender, A.D. Damodaran, Prediction of axial velocity profiles andsolids hold-up in a rotary kiln, Can. J. Chem. Eng. 70 (1992) 438–443,https://doi.org/10.1002/cjce.5450700305.[10] L.G. Ndiaye, S. Caillat, A. Chinnayya, D. Gambier, B. Baudoin, Application of the dy-namic model of Saeman to an industrial rotary kiln incinerator: numerical and ex-perimental results, Waste Manag. 30 (2010) 1188–1195,https://doi.org/10.1016/j.wasman.2009.09.023.[11] Z. Zhang, Y. Wu, H. Li, X. Li, X. Gao, A simple step-change method to determine meanresidence time in rotary kiln and a predictive model at low inclination, PowderTechnol. 333 (2018) 30–37,https://doi.org/10.1016/j.powtec.2018.04.002.[12]O.C.R. John, D. Sullivan, Charles G. Maier, Passage of Solid Particles through RotaryCyclindrical Kilns, (Washington) 1927.[13] A. Chatterjee, A.V. Sathe, R.K. Mukhopadhyay, Flow of materials in rotary kilns usedfor sponge Iron manufacture: part II. Effect of kiln geometry, Metall. Trans. B 14(1983) 383–392,https://doi.org/10.1007/BF02654357.[14]R.H.P. and D. Green, Chemical Engineering Handbook, (New York) 1984.[15] H.M.B. Al-hashemi, O.S.B. Al-amoudi, A review on the angle of repose of granularmaterials, Powder Technol. 330 (2018) 397–417,https://doi.org/10.1016/j.powtec.2018.02.003.[16] B. Colin, J. Dirion, P. Arlabosse, S. Salvador, Wood chipsflow in a rotary kiln: exper-iments and modeling, Chem. Eng. Res. Des. 98 (2015) 179–187,https://doi.org/10.1016/j.cherd.2015.04.017.[17]A.A. Boateng, Rotary Kilns - Transport Phenomena and Transport Processes, Elsevier,Burlington, 2008.[18] S. Ngako, R. Mouangue, S. Caillat, A. Kuitche, E. Saragba, Numerical investigation ofbed depth height, axial velocity and mean residence time of inert particles in steadystate industrial cement rotary kiln: case of Figuil Plant in Cameroon, PowderTechnol. 271 (2015) 221–227,https://doi.org/10.1016/j.powtec.2014.11.007.[19] Y. Gao, B.J. Glasser, M.G. Ierapetritou, A. Cuitino, F.J. Muzzio, J.W. Beeckman, N.A.Fassbender, W.G. Borghard, Measurement of residence time distribution in a rotaryCalciner, AICHE J. 59 (2013) 4068–4076,https://doi.org/10.1002/aic.14175.[20]D.M. Endre Süli, An introduction to numerical analysis, An Introd. to Numer. Anal,Cambridge University Press, New York 2003, pp. 310–324.[21] G. Lumay, F. Boschini, K. Traina, S. Bontempi, J. Remy, R. Cloots, N. Vandewalle, Mea-suring theflowing properties of powders and grains, Powder Technol. 224 (2012)19–27,https://doi.org/10.1016/j.powtec.2012.02.015.[22]Y. Chun, The Out-Flowing Behavior of Particles at the Discharge End of Rotary Kilns,Otto-von-Guericke-University, 2009.[23]D.V.S. Rao, T. Gouricharan, Coal Processing and Utilization, CRC Press/Balkema,London, 2016.[24]A.M.A. Abouzeid, T.S. Mika, K.V. Sastry, D.W. Fuerstenau, The influence of operatingvariables on the residence time distribution for material transport in a contmuousrotary drum, Powder Technol. 10 (1974) 273–288.[25] S.Q. Li, J.H. Yan, R.D. Li, Y. Chi, K.F. Cen, Axial transport and residence time of MSW inrotary kilns part I, Exper. Powder Technol. 126 (2002) 217–227,https://doi.org/10.1016/S0032-5910(02)00014-1.[26] W.Z. Chen, C.H. Wang, T. Liu, C.Y. Zuo, Y.H. Tian, T.T. Gao, Residence time and massflow rate of particles in carbon rotary kilns, Chem. Eng. Process. Process Intensif. 48(2009) 955–960,https://doi.org/10.1016/j.cep.2009.01.002.[27]M. Fardadi, Modeling Dust Formation in Lime Kilns, Doctoral dissertation Universityof Toronto, Toronto, 2010.401T. Haeldermans et al. / Powder Technology 354 (2019) 392–401-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.powtec.2019.06.008-
dc.identifier.isi000490625500039-
item.fulltextWith Fulltext-
item.contributorHAELDERMANS, Tom-
item.contributorLATAF, Amine-
item.contributorVANROELEN, Giovanni-
item.contributorSAMYN, Pieter-
item.contributorVANDAMME, Dries-
item.contributorCUYPERS, Ann-
item.contributorVANREPPELEN, Kenny-
item.contributorSCHREURS, Sonja-
item.accessRightsRestricted Access-
item.validationecoom 2020-
item.fullcitationHAELDERMANS, Tom; LATAF, Amine; VANROELEN, Giovanni; SAMYN, Pieter; VANDAMME, Dries; CUYPERS, Ann; VANREPPELEN, Kenny & SCHREURS, Sonja (2019) Numerical prediction of the mean residence time of solid materials in a pilot-scale rotary kiln. In: POWDER TECHNOLOGY, 354, p. 392-401.-
crisitem.journal.issn0032-5910-
crisitem.journal.eissn1873-328X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Numerical prediction of the mean residence time of solid materials n a pilot-scale rotary kiln.pdf
  Restricted Access
Published version1.31 MBAdobe PDFView/Open    Request a copy
Manuscript_resubmission_ServerUHasselt.pdf
  Restricted Access
Peer-reviewed author version1.32 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

1
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

13
checked on Apr 24, 2024

Page view(s)

132
checked on Jul 5, 2022

Download(s)

92
checked on Jul 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.