Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28738
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPADAYACHEE, Trishanta-
dc.contributor.authorKHAMIAKOVA, Tatsiana-
dc.contributor.authorSHKEDY, Ziv-
dc.contributor.authorSalo, Perttu-
dc.contributor.authorPerola, Markus-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.date.accessioned2019-07-16T13:06:16Z-
dc.date.available2019-07-16T13:06:16Z-
dc.date.issued2019-
dc.identifier.citationStatistical applications in genetics and molecular biology, 18(2) (Art N° 20180008)-
dc.identifier.issn1544-6115-
dc.identifier.urihttp://hdl.handle.net/1942/28738-
dc.description.abstractA way to enhance our understanding of the development and progression of complex diseases is to investigate the influence of cellular environments on gene co-expression (i.e. gene-pair correlations). Often, changes in gene co-expression are investigated across two or more biological conditions defined by categorizing a continuous covariate. However, the selection of arbitrary cut-off points may have an influence on the results of an analysis. To address this issue, we use a general linear model (GLM) for correlated data to study the relationship between gene-module co-expression and a covariate like metabolite concentration. The GLM specifies the gene-pair correlations as a function of the continuous covariate. The use of the GLM allows for investigating different (linear and non-linear) patterns of co-expression. Furthermore, the modeling approach offers a formal framework for testing hypotheses about possible patterns of co-expression. In our paper, a simulation study is used to assess the performance of the GLM. The performance is compared with that of a previously proposed GLM that utilizes categorized covariates. The versatility of the model is illustrated by using a real-life example. We discuss the theoretical issues related to the construction of the test statistics and the computational challenges related to fitting of the proposed model.-
dc.description.sponsorshipThis research was funded by the MIMOmics grant of the European Union's Seventh Framework Programme (FP7-Health-F5-2012) under the Funder Id: 10.13039/100011272, grant agreement number 305280. The support of the IAP Research Network of the Belgian state (Belgian Science Policy) Federaal Wetenschapsbeleid, Funder Id: 10.13039/501100002749, P7/06 is gratefully acknowledged.-
dc.language.isoen-
dc.publisherWALTER DE GRUYTER GMBH-
dc.rights2019 Walter de Gruyter GmbH, Berlin/Boston-
dc.subject.otherconditional co-expression-
dc.subject.otherconditional correlations-
dc.subject.othergene modules-
dc.subject.othergeneral linear models-
dc.subject.othermetabolomics-
dc.subject.othertranscriptomics-
dc.titleA multivariate linear model for investigating the association between gene-module co-expression and a continuous covariate-
dc.typeJournal Contribution-
dc.identifier.issue2-
dc.identifier.volume18-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notes[Padayachee, Trishanta; Khamiakova, Tatsiana; Shkedy, Ziv; Burzykowski, Tomasz] Hasselt Univ, I BioStat, Diepenbeek, Belgium. [Salo, Perttu; Perola, Markus] Natl Inst Hlth & Welf, Unit Publ Hlth Genom, Helsinki, Finland.-
local.publisher.placeBERLIN-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr20180008-
dc.identifier.doi10.1515/sagmb-2018-0008-
dc.identifier.isi000463667100003-
item.fulltextWith Fulltext-
item.contributorPADAYACHEE, Trishanta-
item.contributorKHAMIAKOVA, Tatsiana-
item.contributorSHKEDY, Ziv-
item.contributorSalo, Perttu-
item.contributorPerola, Markus-
item.contributorBURZYKOWSKI, Tomasz-
item.fullcitationPADAYACHEE, Trishanta; KHAMIAKOVA, Tatsiana; SHKEDY, Ziv; Salo, Perttu; Perola, Markus & BURZYKOWSKI, Tomasz (2019) A multivariate linear model for investigating the association between gene-module co-expression and a continuous covariate. In: Statistical applications in genetics and molecular biology, 18(2) (Art N° 20180008).-
item.accessRightsRestricted Access-
item.validationecoom 2020-
crisitem.journal.issn2194-6302-
crisitem.journal.eissn1544-6115-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
10.1515@sagmb-2018-0008.pdf
  Restricted Access
Published version4.3 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.