Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRojas-Gonzalez, Sebastian-
dc.contributor.authorJalali, Hamed-
dc.contributor.authorVAN NIEUWENHUYSE, Inneke-
dc.date.accessioned2019-08-07T14:49:53Z-
dc.date.available2019-08-07T14:49:53Z-
dc.date.issued2018-
dc.identifier.citationRabe, M; Juan, A. A.; Mustafee, N.; Skoogh, A.; Jain, S.; Johansson, B. (Ed.). 2018 WINTER SIMULATION CONFERENCE (WSC), IEEE,p. 2155-2166-
dc.identifier.isbn9781538665725-
dc.identifier.issn0891-7736-
dc.identifier.urihttp://hdl.handle.net/1942/28908-
dc.description.abstractWe consider the multiobjective simulation optimization problem, where we seek to find the non-dominated set of designs evaluated using noisy simulation evaluations, in the context of numerically expensive simulators. We propose a metamodel-based scalarization approach built upon the famous ParEGO algorithm. Our approach mainly differentiates from ParEGO and similar algorithms in that we use stochastic kriging, which explicitly characterizes both the extrinsic uncertainty of the unknown response surface, and the intrinsic uncertainty inherent in a stochastic simulation. We additionally integrate the Multiobjective Optimal Computing Budget Allocation ranking and selection procedure in view of maximizing the probability of selecting systems with the true best expected performance. We evaluate the performance of the algorithm using standard benchmark test functions for multiobjective optimizers, perturbed by heterogeneous noise. The experimental results show that the proposed method outperforms its deterministic counterpart based on well-known quality indicators and the fraction of the true Pareto set found.-
dc.language.isoen-
dc.publisherIEEE-
dc.relation.ispartofseriesWinter Simulation Conference Proceedings-
dc.rights2018 IEEE-
dc.subject.otherStochastic processes; Optimization; Computational modeling; Uncertainty; Analytical models; Numerical models; Response surface methodology-
dc.titleA stochastic-kriging-based multiobjective simulation optimization algorithm-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsRabe, M-
local.bibliographicCitation.authorsJuan, A. A.-
local.bibliographicCitation.authorsMustafee, N.-
local.bibliographicCitation.authorsSkoogh, A.-
local.bibliographicCitation.authorsJain, S.-
local.bibliographicCitation.authorsJohansson, B.-
local.bibliographicCitation.conferencedateDEC 09-12, 2018-
local.bibliographicCitation.conferencenameWinter Simulation Conference (WSC)-
local.bibliographicCitation.conferenceplaceGothenburg, SWEDEN-
dc.identifier.epage2166-
dc.identifier.spage2155-
local.format.pages12-
local.bibliographicCitation.jcatC1-
dc.description.notes[Rojas-Gonzalez, Sebastian] Katholieke Univ Leuven, Dept Decis Sci & Informat Management, Naamsestr 69, B-3000 Leuven, Belgium. [Jalali, Hamed] Supply Chain & Decis Making Neoma Business Sch, Dept Informat Syst, 1 Rue Marechal Juin, Rouen, France. [Van Nieuwenhuyse, Inneke] Hasselt Univ, Res Grp Logist, Agoralaan,Bldg D, B-3590 Diepenbeek, Belgium.-
local.publisher.placeNEW YORK-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1109/WSC.2018.8632322-
dc.identifier.isi000461414102031-
local.bibliographicCitation.btitle2018 WINTER SIMULATION CONFERENCE (WSC)-
item.fulltextWith Fulltext-
item.contributorRojas-Gonzalez, Sebastian-
item.contributorJalali, Hamed-
item.contributorVAN NIEUWENHUYSE, Inneke-
item.fullcitationRojas-Gonzalez, Sebastian; Jalali, Hamed & VAN NIEUWENHUYSE, Inneke (2018) A stochastic-kriging-based multiobjective simulation optimization algorithm. In: Rabe, M; Juan, A. A.; Mustafee, N.; Skoogh, A.; Jain, S.; Johansson, B. (Ed.). 2018 WINTER SIMULATION CONFERENCE (WSC), IEEE,p. 2155-2166.-
item.accessRightsRestricted Access-
item.validationecoom 2020-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
10.1109@WSC.2018.8632322 (1).pdf
  Restricted Access
Published version561.9 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.