Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28977
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMerola, Claudia-
dc.contributor.authorCheng, Hsiu-Wei-
dc.contributor.authorDworschak, Dominik-
dc.contributor.authorKu, Ching-Shun-
dc.contributor.authorChiang, Ching-Yu-
dc.contributor.authorRENNER, Frank-
dc.contributor.authorValtiner, Markus-
dc.date.accessioned2019-08-19T11:04:15Z-
dc.date.available2019-08-19T11:04:15Z-
dc.date.issued2019-
dc.identifier.citationADVANCED MATERIALS INTERFACES, 6(10) (Art N° 1802069)-
dc.identifier.issn2196-7350-
dc.identifier.urihttp://hdl.handle.net/1942/28977-
dc.description.abstractLocalized surface reactions in confinement are inherently difficult to visualize in real-time. Herein multiple-beam-interferometry (MBI) is extended as a real-time monitoring tool for corrosion of nanometer confined bulk metallic surfaces. The capabilities of MBI are demonstrated, and the initial crevice corrosion mechanism on confined nickel and a Ni75Cr16Fe9 model material is compared. The initiation of crevice corrosion is visualized in real time during linear sweep polarization in a 1 x 10(-3) m NaCl solution. Pre- and post-experiment analysis is performed to complementarily characterize the degraded area with atomic force microscopy (AFM), optical microscopy, nano-Laue diffraction (nano-LD), scanning electron microscopy (SEM)/electron backscatter diffraction (EBSD), and X-ray photoelectron spectroscopy (XPS). Overall, Ni75Cr16Fe9 displays a better corrosion resistance; however, MBI imaging reveals 200 nm deep severe localized corrosion of the alloy in the crevice opening. Chromium rich passive films formed on the alloy contribute to accelerated corrosion of the confined alloy by a strongly acidifying dissolution of the passive film in the crevice opening. Nano-LD further reveals preferential crystallographic defect and corrosion migration planes during corrosion. MBI provides nanometer accurate characterization of topologies and degradation in confined spaces. The technique enables the understanding of the initial crevice corrosion mechanism and testing modeling approaches and machine-learning algorithms.-
dc.description.sponsorshipThe authors acknowledge the support of the European Research Council in the framework of the ERC Starting Grant CSI.interface, grant number 663677 (development of reflection mode SFA). The authors also acknowledge the scientific staff at beamline 21A (TPS, NSRRC) for technical support. They also thank H. Springer for supplying model alloy samples.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.-
dc.subject.othercrevice corrosion; Laue diffraction; nickel; passive films; surface forces apparatus-
dc.subject.othercrevice corrosion; Laue diffraction; nickel; passive films; surface forces apparatus-
dc.titleNanometer Resolved Real Time Visualization of Acidification and Material Breakdown in Confinement-
dc.typeJournal Contribution-
dc.identifier.issue10-
dc.identifier.volume6-
local.format.pages11-
local.bibliographicCitation.jcatA1-
dc.description.notes[Merola, Claudia; Cheng, Hsiu-Wei; Dworschak, Dominik; Valtiner, Markus] Vienna Univ Technol, Inst Appl Phys, A-1040 Vienna, Austria. [Merola, Claudia] Max Planck Inst Eisenforsch GmbH, Dept Surface Chem & Interface Engn, D-40237 Dusseldorf, Germany. [Ku, Ching-Shun; Chiang, Ching-Yu] Natl Synchrotron Radiat Res Ctr, Mat Sci Grp, Hsinchu 300, Taiwan. [Renner, Frank Uwe] Hasselt Univ, Inst Mat Res IMO, BE-3590 Diepenbeek, Belgium. [Renner, Frank Uwe] IMEC VZW, Div IMOMEC, BE-3590 Diepenbeek, Belgium.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr1802069-
dc.identifier.doi10.1002/admi.201802069-
dc.identifier.isi000468810200008-
item.validationecoom 2020-
item.contributorMerola, Claudia-
item.contributorCheng, Hsiu-Wei-
item.contributorDworschak, Dominik-
item.contributorKu, Ching-Shun-
item.contributorChiang, Ching-Yu-
item.contributorRENNER, Frank-
item.contributorValtiner, Markus-
item.accessRightsOpen Access-
item.fullcitationMerola, Claudia; Cheng, Hsiu-Wei; Dworschak, Dominik; Ku, Ching-Shun; Chiang, Ching-Yu; RENNER, Frank & Valtiner, Markus (2019) Nanometer Resolved Real Time Visualization of Acidification and Material Breakdown in Confinement. In: ADVANCED MATERIALS INTERFACES, 6(10) (Art N° 1802069).-
item.fulltextWith Fulltext-
crisitem.journal.issn2196-7350-
crisitem.journal.eissn2196-7350-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
merola 1.pdfPublished version2.39 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.