Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/28999
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoradinejad, Saber-
dc.contributor.authorVANDAMME, Dries-
dc.contributor.authorGlover, Caitlin M.-
dc.contributor.authorSeighalani, Tahere Zadfathollah-
dc.contributor.authorZamyadi, Arash-
dc.date.accessioned2019-08-20T12:44:24Z-
dc.date.available2019-08-20T12:44:24Z-
dc.date.issued2019-
dc.identifier.citationWater, 11(7) (Art N° 1473)-
dc.identifier.issn2073-4441-
dc.identifier.urihttp://hdl.handle.net/1942/28999-
dc.description.abstractThe co-occurrence of non-toxic phytoplankton alongside cyanobacteria adds to the challenge of treating source waters with harmful algal blooms. The non-toxic species consume the oxidant and, thereby, reduce the efficacy of oxidation of both the extracellular and intracellular cyanotoxins. In this work, a 3D printed mini-hydrocyclone was used to separate a mixture of non-toxic green algae, Scenedesmus obliquus, from a toxic species of cyanobacteria, Microcystis aeruginosa. When water is pumped through the mini-hydrocyclone, cells exit through an overflow or underflow port depending on their size, shape, and density relative to the other cells and particles in the water matrix. The overflow port contains the cells that are smaller and less dense since these particles move toward the center of the hydrocyclone. In this work, the majority (>93%) of Microcystis cells were found in the overflow while the underflow contained primarily the Scenedesmus (>80%). This level of separation efficiency was maintained over the 30-min experiment and the majority of both cells (>86%) remained viable following the separation, which indicates that the pumping combined with forces exerted within the mini-hydrocyclone were not sufficient to cause cell death. The impact of free chlorine on the cells both pre-separation and post-separation was evaluated at two doses (1 and 2 mg/L). After separation, the overflow, which contained primarily Microcystis, had at least a 24% reduction in the free chlorine decay rate as compared to the feed water, which contained both species. This reduction in chlorine consumption shows that the cells separated via mini-hydrocyclone would likely require lower doses of oxidant to produce a similar level of degradation of the cyanotoxins present in either the extracellular or intracellular form. However, future work should be undertaken to evaluate this effect in natural bloom samples-
dc.description.sponsorshipThis research was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants Program, and The Fonds de recherche du Québec—Nature et technologies (FRQNT) “Établissement de nouveaux chercheurs universitaires” grant program.-
dc.language.isoen-
dc.rights2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).-
dc.subject.other3D printing; hydrocyclone; separation; chlorination; cyanobacteria; green algae-
dc.titleMini-Hydrocyclone Separation of Cyanobacterial and Green Algae: Impact on Cell Viability and Chlorine Consumption-
dc.typeJournal Contribution-
dc.identifier.issue7-
dc.identifier.volume11-
local.bibliographicCitation.jcatA1-
dc.description.notesZamyadi, A (reprint author), BGA Innovat Hub & Civil Mineral & Min Engn Dept, 2900 Edouard Montpetit Blvd, Montreal, PQ H3T 1J4, Canada. UNSW, Sch Civil & Environm Engn, Water Res Ctr, Sydney, NSW 2052, Australia. arash.zamaydi@polymtl.ca-
dc.relation.referencesTomlinson, A.; Drikas, M.; Brookes, J.D. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination. Water Res. 2016, 102, 229–240. [Google Scholar] [CrossRef] [PubMed] Linden, L.G.; Lewis, D.M.; Burch, M.D.; Brookes, J.D. Interannual variability in rainfall and its impact on nutrient load and phytoplankton in Myponga Reservoir, South Australia. Int. J. River Basin Manag. 2004, 2, 169–179. [Google Scholar] [CrossRef] Bade, D.L.; Carpenter, S.R.; Cole, J.J.; Pace, M.L.; Kritzberg, E.; Van de Bogert, M.C.; Cory, R.M.; McKnight, D.M. Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions. Biogeochemistry 2007, 84, 115–129. [Google Scholar] [CrossRef] Paerl, H.W. Mitigating Toxic Planktonic Cyanobacterial Blooms in Aquatic Ecosystems Facing Increasing Anthropogenic and Climatic Pressures. Toxins 2018, 10, 76. [Google Scholar] [CrossRef] [PubMed] Zamyadi, A.; Dorner, S.; Sauvé, S.; Ellis, D.; Bolduc, A.; Bastien, C.; Prévost, M. Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. Water Res. 2013, 47, 1080–1090. [Google Scholar] [CrossRef] [PubMed] Zamyadi, A.; Romanis, C.; Mills, T.; Neilan, B.; Choo, F.; Coral, L.A.; Gale, D.; Newcombe, G.; Crosbie, N.; Stuetz, R.; et al. Diagnosing water treatment critical control points for cyanobacterial removal: Exploring benefits of combined microscopy, next-generation sequencing, and cell integrity methods. Water Res. 2019, 152, 96–105. [Google Scholar] [CrossRef] [PubMed] Pazouki, P.; Prevost, M.; McQuiad, N.; Barbeau, B.; de Boutray, M.-L.; Zamyadi, A.; Dorner, S. Breakthrough of cyanobacteria in bank filtration. Water Res. 2016, 102, 170–179. [Google Scholar] [CrossRef] Zamyadi, A.; Coral, L.A.; Barbeau, B.; Dorner, S.; Lapolli, F.R.; Prévost, M. Fate of toxic cyanobacterial genera from natural bloom events during ozonation. Water Res. 2015, 73, 204–215. [Google Scholar] [CrossRef] Zamyadi, A.; Henderson, R.K.; Stuetz, R.; Newcombe, G.; Newton, K.; Gladman, B. Cyanobacterial management in full-scale water treatment and recycling processes: Reactive dosing following intensive monitoring. Environ. Sci. Water Res. Technol. 2016, 2, 362–375. [Google Scholar] [CrossRef] Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; World Health Organization (WHO): London, UK, 1999. [Google Scholar] Holtcamp, W. The emerging science of BMAA: Do cyanobacteria contribute to neurodegenerative disease? Environ. Health Perspect. 2012, 120, a110–a116. [Google Scholar] [CrossRef] Bradley, W.G.; Borenstein, A.R.; Nelson, M.; Codd, G.A.; Rosen, B.H.; Stommel, E.W.; Cox, P.A. Is exposure to cyanobacteria an environmental risk factor for amyotrophic lateral sclerosis and other neurodegenerative disease? Amyotroph. Lateral Scler. Frontotemporal Degener. 2013, 14, 325–333. [Google Scholar] [CrossRef] [PubMed] Chernoff, N.; Hill, D.J.; Diggs, D.L.; Faison, B.D.; Francis, B.M.; Lang, J.R.; Larue, M.M.; Le, T.-T.; Loftin, K.A.; Lugo, J.N.; et al. A critical review of the postulated role of the nonessential amino acid, b-N-methylamino-L-alanine, in neurodegenerative disease in humans. J. Toxicol. Environ. Health 2017, 20, 183–229. [Google Scholar] [CrossRef] [PubMed] Suffet, I.H.; Corado, A.; Chou, D.; McGuire, M.J.; Butterworth, S. AWWA taste and odor survey. JAWWA 1996, 88, 168–180. [Google Scholar] [CrossRef] Watson, S.B.; Ridal, J.; Boyer, G.L. Taste and odour and cyanobacterial toxins: Impairment, prediction, and management in the Great Lakes. Can. J. Fish. Aquat. Sci. 2008, 65, 1779–1796. [Google Scholar] [CrossRef] Satchwill, T.; Watson, S.B.; Dixon, E. Odourous algal-derived alkenes: Differences in stability and treatment responses in drinking water. Water Sci. Technol. 2007, 55, 95–102. [Google Scholar] [CrossRef] [PubMed] Jüttner, F.; Watson, S.B. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl. Environ. Microbiol. 2007, 73, 4395–4406. [Google Scholar] [CrossRef] [PubMed] Zamyadi, A.; Fan, Y.; Daly, R.I.; Prevost, M. Chlorination of microcystis aeruginosa: Toxin release and oxidation, cellular chlorine demand and disinfection by-products formation. Water Res. 2013, 47, 1080–1090. [Google Scholar] [CrossRef] Syed, M.S.; Rafeie, M.; Henderson, R.; Vandamme, D.; Asadnia, M.; Ebrahimi Warkiani, M. A 3D-printed mini-hydrocyclone for high throughput particle separation: Application to primary harvesting of microalgae. Lab Chip 2017, 17, 2459–2469. [Google Scholar] [CrossRef] Maier, R.; Pepper, I.L.; Gerba, C.P. Environmental Microbiology, 2nd ed.; Academic Press, Elsevier: Cambridge, MA, USA, 2009. [Google Scholar] Kommineni, S.; Amante, K.; Karnik, B.; Sommerfeld, M.; Dempster, T. Strategies for Controlling and Mitigating Algal Growth within Water Treatment Plants; Water Research Foundation: Denver, CO, USA, 2009. [Google Scholar] American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater; American Water Works Association, Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar] Lund, J.W.G.; Kipling, C.; Le Cren, E.D. The inverted microscope method of estimating algal number and the statistical basis of estimations by counting. Hydrobiologia 1958, 11, 143–170. [Google Scholar] [CrossRef] Henderson, R.; Parson, S.A.; Jefferson, B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 2008, 42, 1827–1845. [Google Scholar] [CrossRef] Walsby, A.E. Gas vesicles. Microbiol. Rev. 1994, 58, 94–144. [Google Scholar] [CrossRef] [PubMed] Oliver, R. Floating and sinking in gas-vacuolate cyanobacteria. J. Phycol. 1994, 30, 161–173. [Google Scholar] [CrossRef] Li, M.; Zhu, W.; Guo, L.; Hu, J.; Chen, H.; Xiao, M. To increase size or decrease density? Different Microcystis species has different choice to form blooms. Sci. Rep. 2016, 6, 37056. [Google Scholar] [CrossRef] [PubMed] Reynolds, C.S.; Oliver, R.L.; Walsby, A.E. Cyanobacterial dominance: The role of buoyancy regulation in dynamic lake environments. N. Z. J. Mar. Freshw. Res. 1987, 21, 379–390. [Google Scholar] [CrossRef] Simioni, T.; Quadri, M.B.; Derner, R.B. Drying of Scenedesmus obliquus: Experimental and modeling study. Algal Res. 2019, 39, 101428. [Google Scholar] [CrossRef] Lavoie, A.; Mouget, J.-L.; de la Noüe, J. Measurement of freshwater micro-algae cell density with Percoll density gradients. J. Microbiol. Methods 1986, 4, 251–259. [Google Scholar] [CrossRef] Song, Y.; Zhang, L.-L.; Li, J.; Chen, M.; Zhang, Y.-W. Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs. Sci. Total Environ. 2018, 636, 230–239. [Google Scholar] [CrossRef] Wang, C.; Lan, C.Q. Effects of shear stress on microalgae—A review. Biotechnol. Adv. 2018, 36, 986–1002. [Google Scholar] [CrossRef] Matthijs, H.C.P.; Visser, P.M.; Reeze, B.; Meeuse, J.; Slot, P.C.; Wijn, G.; Talens, R.; Huisman, J. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res. 2012, 46, 1460–1472. [Google Scholar] [CrossRef] Fan, J.J.; Ho, L.; Hobson, P.; Brookes, J. Evaluating the effectiveness of copper sulfate, chlorine, potassium permanganate, hydrogen peroxide, and ozone on cyanobacterial cell integrity. Water Res. 2013, 47, 5153–5164. [Google Scholar] [CrossRef] Xiao, M.; Li, M.; Reynolds, C.S. Colony formation in the cyanobacterium Microcystis. Biol. Rev. 2018, 93, 1399–1420. [Google Scholar] [CrossRef] [PubMed] Daly, R.I.; Ho, L.; Brookes, J.D. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environ. Sci. Technol. 2007, 41, 4447–4453. [Google Scholar] [CrossRef] [PubMed] Zamyadi, A.; MacLeod, S.L.; Fan, Y.; McQuaid, N.; Dorner, S.; Sauvé, S.; Prévost, M. Toxic cyanobacterial breakthrough and accumulation in a drinking water treatment plant: A monitoring and treatment challenge. Water Res. 2012, 46, 1511–1523. [Google Scholar] [CrossRef] [PubMed] Zamyadi, A.; Ho, L.; Newcombe, G.; Daly, R.I.; Burch, M.; Baker, P.; Prévost, M. Release and oxidation of cell-bound saxitoxins during chlorination of Anabaena circinalis cells. Environ. Sci. Technol. 2010, 44, 9055–9061. [Google Scholar] [CrossRef] [PubMed]-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr1473-
dc.identifier.doi10.3390/w11071473-
dc.identifier.isi000480632300158-
dc.identifier.urlhttps://www.mdpi.com/2073-4441/11/7/1473-
item.fullcitationMoradinejad, Saber; VANDAMME, Dries; Glover, Caitlin M.; Seighalani, Tahere Zadfathollah & Zamyadi, Arash (2019) Mini-Hydrocyclone Separation of Cyanobacterial and Green Algae: Impact on Cell Viability and Chlorine Consumption. In: Water, 11(7) (Art N° 1473).-
item.validationecoom 2020-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.contributorMoradinejad, Saber-
item.contributorVANDAMME, Dries-
item.contributorGlover, Caitlin M.-
item.contributorSeighalani, Tahere Zadfathollah-
item.contributorZamyadi, Arash-
crisitem.journal.eissn2073-4441-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Moradinejad et al. - 2019 - Water.pdfPublished version1.31 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

7
checked on May 18, 2024

Page view(s)

106
checked on Sep 6, 2022

Download(s)

156
checked on Sep 6, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.