Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29012
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBRAEKEN, Yasmine-
dc.contributor.authorCHERUKU, Srujan-
dc.contributor.authorSENECA, Senne-
dc.contributor.authorSMISDOM, Nick-
dc.contributor.authorBerden, Laurens-
dc.contributor.authorKruyfhooft, Louis-
dc.contributor.authorPENXTEN, Huguette-
dc.contributor.authorLUTSEN, Laurence-
dc.contributor.authorFron, Eduard-
dc.contributor.authorVANDERZANDE, Dirk-
dc.contributor.authorAMELOOT, Marcel-
dc.contributor.authorMAES, Wouter-
dc.contributor.authorETHIRAJAN, Anitha-
dc.date.accessioned2019-08-22T09:40:27Z-
dc.date.available2019-08-22T09:40:27Z-
dc.date.issued2019-
dc.identifier.citationACS Biomaterials Science & Engineering, 5(4), p. 1967-1977-
dc.identifier.issn2373-9878-
dc.identifier.urihttp://hdl.handle.net/1942/29012-
dc.description.abstractFluorescent conjugated polymers formulated in nanoparticles show attractive properties to be used as bioimaging probes. However, their fluorescence brightness is generally limited by quenching phenomena due to interchain aggregation in the confined nanoparticle space. In this work, branched conjugated polymer networks are investigated as a way to enhance the photoluminescence quantum yield of the resulting conjugated polymer nanoparticles (CPNs). 1,3,5-Tribromobenzene and 2,2′,7,7′-tetrabromo-9,9′-spirobifluorene are chosen as branching moieties and are added in 3 or 5 mol % to the poly(p- phenylene ethynylene) (PPE) conjugated polymer synthesis. Nanoparticles of all samples are prepared via the combined miniemulsion/solvent evaporation technique. The optical properties of the branched polymers in solution and in nanoparticle form are then compared to those of the linear PPE counterpart. The fluorescence quantum yield of the CPNs increases from 5 to 11% for the samples containing 1,3,5-tribromobenzene. Furthermore, when 5 mol % of either branching molecule is used, the one-photon fluorescence brightness doubles. The nanoparticles show low cytotoxicity in A549 human lung carcinoma cells up to a concentration of 100 μg/mL for 24 h. They also exhibit good particle uptake into cells and compatibility with two-photon imaging.-
dc.description.sponsorshipThe authors thank Hasselt University and the Research Foundation Flanders (FWO-Vlaanderen) for continuous financial support. Y.B. acknowledges the former IWT (Agentschap voor Innovatie door Wetenschap en Technologie; now FWO Strategic Basic research) for her doctoral scholar- ship. S.C. is a doctoral fellow of the FWO-Vlaanderen. S.S. is an SB PhD fellow at FWO-Vlaanderen.-
dc.language.isoen-
dc.rights2019 American Chemical Society-
dc.subject.otherpoly(p-phenylene ethynylene), branching, conjugated polymer nanoparticle, miniemulsion, fluorescence-
dc.titleEffect of Branching on the Optical Properties of Poly(p‐phenylene ethynylene) Conjugated Polymer Nanoparticles for Bioimaging-
dc.typeJournal Contribution-
dc.identifier.epage1977-
dc.identifier.issue4-
dc.identifier.spage1967-
dc.identifier.volume5-
local.bibliographicCitation.jcatA1-
dc.description.notesThe authors declare no competing financial interest.-
dc.relation.references(1) Repenko, T.; Rix, A.; Ludwanowski, S.; Go, D.; Kiessling, F.; Lederle, W.; Kuehne, A. J. C., Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications. Nat Commun 2017, 8 (1), 470. DOI: 10.1038/s41467-017-00545-0. (2) Yao, J.; Yang, M.; Duan, Y., Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114 (12), 6130-6178. DOI: 10.1021/cr200359p. (3) Wu, C.; Chiu, D. T., Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. Engl. 2013, 52 (11), 3086-3109. DOI: 10.1002/anie.201205133. (4) van Dam, G. M.; Themelis, G.; Crane, L. M.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; de Jong, J. S.; Arts, H. J.; van der Zee, A. G.; Bart, J.; Low, P. S.; Ntziachristos, V., Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat. Med. 2011, 17 (10), 1315-1319. DOI: 10.1038/nm.2472. (5) Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5 (9), 763-775. DOI: 10.1038/nmeth.1248. (6) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307 (5709), 538-544. DOI: 10.1126/science.1104274. (7) Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S., Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto Calif) 2013, 6 (1), 143-162. DOI: 10.1146/annurev-anchem-060908-155136. (8) Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y., The properties and applications of nanodiamonds. Nat Nanotechnol 2011, 7 (1), 11-23. DOI: 10.1038/nnano.2011.209. (9) Penjweini, R.; Deville, S.; D'Olieslaeger, L.; Berden, M.; Ameloot, M.; Ethirajan, A., Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy. J Control Release 2015, 218, 82-93. DOI: 10.1016/j.jconrel.2015.09.064. (10) Burns, A. A.; Vider, J.; Ow, H.; Herz, E.; Penate-Medina, O.; Baumgart, M.; Larson, S. M.; Wiesner, U.; Bradbury, M., Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 2009, 9 (1), 442-448. DOI: 10.1021/nl803405h. (11) Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J., Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2008, 2 (11), 2415-2423. DOI: 10.1021/nn800590n. (12) Peng, J.; He, X.; Wang, K.; Tan, W.; Wang, Y.; Liu, Y., Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors. Anal. Bioanal. Chem. 2007, 388 (3), 645-654. DOI: 10.1007/s00216-007-1244-9. (13) Peng, H. S.; Stolwijk, J. A.; Sun, L. N.; Wegener, J.; Wolfbeis, O. S., A nanogel for ratiometric fluorescent sensing of intracellular pH values. Angew. Chem. Int. Ed. Engl. 2010, 49 (25), 4246-4249. DOI: 10.1002/anie.200906926. (14) Holliday, S.; Li, Y.; Luscombe, C. K., Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Prog. Polym. Sci. 2017, 70, 34-51. DOI: 10.1016/j.progpolymsci.2017.03.003. (15) Pirotte, G.; Verstappen, P.; Vanderzande, D.; Maes, W., On the “True” Structure of Push-Pull-Type Low-Bandgap Polymers for Organic Electronics. Adv. Electron. Mater. 2018, 4 (10), 1700481. DOI: 10.1002/aelm.201700481. (16) Baeg, K. J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Y., Organic light detectors: photodiodes and phototransistors. Adv. Mater. 2013, 25 (31), 4267-4295. DOI: 10.1002/adma.201204979. (17) Wu, H.; Ying, L.; Yang, W.; Cao, Y., Progress and perspective of polymer white light-emitting devices and materials. Chem. Soc. Rev. 2009, 38 (12), 3391-3400. DOI: 10.1039/b816352a. (18) Sirringhaus, H., 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 2014, 26 (9), 1319-1335. DOI: 10.1002/adma.201304346. (19) Ahmad Khanbeigi, R.; Abelha, T. F.; Woods, A.; Rastoin, O.; Harvey, R. D.; Jones, M. C.; Forbes, B.; Green, M. A.; Collins, H.; Dailey, L. A., Surface chemistry of photoluminescent F8BT conjugated polymer nanoparticles determines protein corona formation and internalization by phagocytic cells. Biomacromolecules 2015, 16 (3), 733-742. DOI: 10.1021/bm501649y. (20) Tuncel, D.; Demir, H. V., Conjugated polymer nanoparticles. Nanoscale 2010, 2 (4), 484-494. DOI: 10.1039/b9nr00374f. (21) Peters, M.; Seneca, S.; Hellings, N.; Junkers, T.; Ethirajan, A., Size-dependent properties of functional PPV-based conjugated polymer nanoparticles for bioimaging. Colloids Surf. B. Biointerfaces 2018, 169, 494-501. DOI: 10.1016/j.colsurfb.2018.05.055. (22) Boudreault, P.-L. T.; Najari, A.; Leclerc, M., Processable Low-Bandgap Polymers for Photovoltaic Applications†. Chem. Mater. 2011, 23 (3), 456-469. DOI: 10.1021/cm1021855. (23) Smith, A. M.; Mancini, M. C.; Nie, S., Bioimaging: second window for in vivo imaging. Nat Nanotechnol 2009, 4 (11), 710-711. DOI: 10.1038/nnano.2009.326. (24) Ding, D.; Liu, J.; Feng, G.; Li, K.; Hu, Y.; Liu, B., Bright far-red/near-infrared conjugated polymer nanoparticles for in vivo bioimaging. Small 2013, 9 (18), 3093-3102. DOI: 10.1002/smll.201300171. (25) Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F., Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horiz. 2016, 1 (3), 168-184. DOI: 10.1039/c5nh00073d. (26) Klingstedt, T.; Nilsson, K. P., Conjugated polymers for enhanced bioimaging. Biochim. Biophys. Acta 2011, 1810 (3), 286-296. DOI: 10.1016/j.bbagen.2010.05.003. (27) Kwon, N. Y.; Kim, D.; Jang, G.; Lee, J. H.; So, J. H.; Kim, C. H.; Kim, T. H.; Lee, T. S., Highly selective cysteine detection and bioimaging in zebrafish through emission color change of water-soluble conjugated polymer-based assay complex. ACS Appl Mater Interfaces 2012, 4 (3), 1429-1433. DOI: 10.1021/am201677r. (28) Ma, M.; Lei, M.; Tan, X.; Tan, F.; Li, N., Theranostic liposomes containing conjugated polymer dots and doxorubicin for bio-imaging and targeted therapeutic delivery. Rsc Adv. 2016, 6 (3), 1945-1957. DOI: 10.1039/c5ra24485d. (29) Kahveci, Z.; Vazquez-Guillo, R.; Martinez-Tome, M. J.; Mallavia, R.; Mateo, C. R., New Red-Emitting Conjugated Polyelectrolyte: Stabilization by Interaction with Biomolecules and Potential Use as Drug Carriers and Bioimaging Probes. ACS Appl Mater Interfaces 2016, 8 (3), 1958-1969. DOI: 10.1021/acsami.5b10167. (30) Yu, J.; Rong, Y.; Kuo, C. T.; Zhou, X. H.; Chiu, D. T., Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Anal. Chem. 2017, 89 (1), 42-56. DOI: 10.1021/acs.analchem.6b04672. (31) Chan, Y. H.; Wu, P. J., Semiconducting Polymer Nanoparticles as Fluorescent Probes for Biological Imaging and Sensing. Part. Part. Syst. Charact. 2015, 32 (1), 11-28. DOI: 10.1002/ppsc.201400123. (32) Pecher, J.; Mecking, S., Nanoparticles of conjugated polymers. Chem. Rev. 2010, 110 (10), 6260-6279. DOI: 10.1021/cr100132y. (33) Feng, L.; Zhu, C.; Yuan, H.; Liu, L.; Lv, F.; Wang, S., Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 2013, 42 (16), 6620-6633. DOI: 10.1039/c3cs60036j. (34) Peters, M.; Zaquen, N.; D'Olieslaeger, L.; Bove, H.; Vanderzande, D.; Hellings, N.; Junkers, T.; Ethirajan, A., PPV-Based Conjugated Polymer Nanoparticles as a Versatile Bioimaging Probe: A Closer Look at the Inherent Optical Properties and Nanoparticle-Cell Interactions. Biomacromolecules 2016, 17 (8), 2562-2571. DOI: 10.1021/acs.biomac.6b00574. (35) Doose, S.; Neuweiler, H.; Sauer, M., Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. Chemphyschem 2009, 10 (9-10), 1389-1398. DOI: 10.1002/cphc.200900238. (36) Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J., Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 2004, 104 (11), 4971-5004. DOI: 10.1021/cr040084k. (37) Schwartz, B. J., Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. Annu. Rev. Phys. Chem. 2003, 54 (1), 141-172. DOI: 10.1146/annurev.physchem.54.011002.103811. (38) Braeken, Y.; Cheruku, S.; Ethirajan, A.; Maes, W., Conjugated Polymer Nanoparticles for Bioimaging. Materials (Basel) 2017, 10 (12). DOI: 10.3390/ma10121420. (39) Yang, C.; Liu, H.; Zhang, Y.; Xu, Z.; Wang, X.; Cao, B.; Wang, M., Hydrophobic-Sheath Segregated Macromolecular Fluorophores: Colloidal Nanoparticles of Polycaprolactone-Grafted Conjugated Polymers with Bright Far-Red/Near-Infrared Emission for Biological Imaging. Biomacromolecules 2016, 17 (5), 1673-1683. DOI: 10.1021/acs.biomac.6b00092. (40) Lv, Y.; Liu, P.; Ding, H.; Wu, Y.; Yan, Y.; Liu, H.; Wang, X.; Huang, F.; Zhao, Y.; Tian, Z., Conjugated Polymer-Based Hybrid Nanoparticles with Two-Photon Excitation and Near-Infrared Emission Features for Fluorescence Bioimaging within the Biological Window. ACS Appl Mater Interfaces 2015, 7 (37), 20640-20648. DOI: 10.1021/acsami.5b05150. (41) Damavandi, M.; Baek, P.; Pilkington, L. I.; Javed Chaudhary, O.; Burn, P.; Travas-Sejdic, J.; Barker, D., Synthesis of grafted poly( p- phenyleneethynylene) via ARGET ATRP: Towards nonaggregating and photoluminescence materials. Eur. Polym. J. 2017, 89, 263-271. DOI: 10.1016/j.eurpolymj.2017.02.035. (42) D'Olieslaeger, L.; Braeken, Y.; Cheruku, S.; Smits, J.; Ameloot, M.; Vanderzande, D.; Maes, W.; Ethirajan, A., Tuning the optical properties of poly(p-phenylene ethynylene) nanoparticles as bio-imaging probes by side chain functionalization. J. Colloid Interface Sci. 2017, 504, 527-537. DOI: 10.1016/j.jcis.2017.05.072. (43) Liu, J.; Li, K.; Liu, B., Far-Red/Near-Infrared Conjugated Polymer Nanoparticles for Long-Term In Situ Monitoring of Liver Tumor Growth. Adv Sci (Weinh) 2015, 2 (5), 1500008. DOI: 10.1002/advs.201500008. (44) Liu, H. Y.; Wu, P. J.; Kuo, S. Y.; Chen, C. P.; Chang, E. H.; Wu, C. Y.; Chan, Y. H., Quinoxaline-Based Polymer Dots with Ultrabright Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. J. Am. Chem. Soc. 2015, 137 (32), 10420-10429. DOI: 10.1021/jacs.5b06710. (45) Chen, C. P.; Huang, Y. C.; Liou, S. Y.; Wu, P. J.; Kuo, S. Y.; Chan, Y. H., Near-infrared fluorescent semiconducting polymer dots with high brightness and pronounced effect of positioning alkyl chains on the comonomers. ACS Appl Mater Interfaces 2014, 6 (23), 21585-21595. DOI: 10.1021/am506577r. (46) Liu, J.; Feng, G.; Ding, D.; Liu, B., Bright far-red/near-infrared fluorescent conjugated polymer nanoparticles for targeted imaging of HER2-positive cancer cells. Polym. Chem. 2013, 4 (16), 4326-4334. DOI: 10.1039/c3py00605k. (47) Behrendt, J. M.; Esquivel Guzman, J. A.; Purdie, L.; Willcock, H.; Morrison, J. J.; Foster, A. B.; O'Reilly, R. K.; McCairn, M. C.; Turner, M. L., Scalable synthesis of multicolour conjugated polymer nanoparticles via Suzuki-Miyaura polymerisation in a miniemulsion and application in bioimaging. React. Funct. Polym. 2016, 107, 69-77. DOI: 10.1016/j.reactfunctpolym.2016.08.006. (48) Kim, B. S.-I.; Jin, Y.-J.; Lee, W.-E.; Byun, D. J.; Yu, R.; Park, S.-J.; Kim, H.; Song, K.-H.; Jang, S.-Y.; Kwak, G., Highly Fluorescent, Photostable, Conjugated Polymer Dots with Amorphous, Glassy-State, Coarsened Structure for Bioimaging. Adv. Opt. Mater. 2015, 3 (1), 78-86. DOI: 10.1002/adom.201400347. (49) Kim, I. B.; Shin, H.; Garcia, A. J.; Bunz, U. H. F., Use of a folate-PPE conjugate to image cancer cells in vitro. Bioconj. Chem. 2007, 18 (3), 815-820. DOI: 10.1021/bc0603440. (50) Braeken, Y.; Verstappen, P.; Lutsen, L.; Vanderzande, D.; Maes, W., Synthesis of a multifunctional poly(p-phenylene ethynylene) scaffold with clickable azide-containing side chains for (bio)sensor applications. Polym. Chem. 2015, 6 (37), 6720-6731. DOI: 10.1039/c5py00741k. (51) Chen, T.; Xu, W.; Huang, Z.; Peng, H.; Ke, Z.; Lu, X.; Yan, Y.; Liu, R., Poly(phenyleneethynylene) nanoparticles: preparation, living cell imaging and potential application as drug carriers. J. Mater. Chem. B 2015, 3 (17), 3564-3572. DOI: 10.1039/c5tb00064e. (52) Mendez, E.; Moon, J. H., Side chain and backbone structure-dependent subcellular localization and toxicity of conjugated polymer nanoparticles. Chem Commun (Camb) 2013, 49 (54), 6048-6050. DOI: 10.1039/c3cc43015d. (53) D’Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van Der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A., Tuning of PCDTBT:PC 71 BM blend nanoparticles for eco-friendly processing of polymer solar cells. Sol. Energy Mater. Sol. Cells 2017, 159, 179-188. DOI: 10.1016/j.solmat.2016.09.008. (54) Ponzio, R. A.; Marcato, Y. L.; Gomez, M. L.; Waiman, C. V.; Chesta, C. A.; Palacios, R. E., Crosslinked polymer nanoparticles containing single conjugated polymer chains. Methods Appl Fluoresc 2017, 5 (2), 024001. DOI: 10.1088/2050-6120/aa6405. (55) D'Olieslaeger, L.; Pirotte, G.; Cardinaletti, I.; D'Haen, J.; Manca, J.; Vanderzande, D.; Maes, W.; Ethirajan, A., Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions. Org. Electron. 2017, 42, 42-46. DOI: 10.1016/j.orgel.2016.12.018. (56) Grabolle, M.; Spieles, M.; Lesnyak, V.; Gaponik, N.; Eychmuller, A.; Resch-Genger, U., Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Anal. Chem. 2009, 81 (15), 6285-6294. DOI: 10.1021/ac900308v. (57) Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Stryland, E. W., Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26 (4), 760-769. DOI: 10.1109/3.53394. (58) Lavis, L. D.; Raines, R. T., Bright ideas for chemical biology. ACS Chem Biol 2008, 3 (3), 142-155. DOI: 10.1021/cb700248m. (59) Lewinski, N.; Colvin, V.; Drezek, R., Cytotoxicity of nanoparticles. Small 2008, 4 (1), 26-49. DOI: 10.1002/smll.200700595. (60) Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P., Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 2009, 6 (1), 14. DOI: 10.1186/1743-8977-6-14. (61) Yang, D. L.; Zhang, S. W.; Hu, Y. L.; Chen, J.; Bao, B. Q.; Yuwen, L. H.; Weng, L. X.; Cheng, Y. X.; Wang, L. H., AIE-active conjugated polymer nanoparticles with red-emission for in vitro and in vivo imaging. Rsc Adv. 2016, 6 (115), 114580-114586. DOI: 10.1039/c6ra18678e. (62) Denk, W.; Strickler, J. H.; Webb, W. W., Two-photon laser scanning fluorescence microscopy. Science 1990, 248 (4951), 73-76. DOI: 10.1126/science.2321027.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acsbiomaterials.8b01416-
dc.identifier.isi000464241400029-
item.fullcitationBRAEKEN, Yasmine; CHERUKU, Srujan; SENECA, Senne; SMISDOM, Nick; Berden, Laurens; Kruyfhooft, Louis; PENXTEN, Huguette; LUTSEN, Laurence; Fron, Eduard; VANDERZANDE, Dirk; AMELOOT, Marcel; MAES, Wouter & ETHIRAJAN, Anitha (2019) Effect of Branching on the Optical Properties of Poly(p‐phenylene ethynylene) Conjugated Polymer Nanoparticles for Bioimaging. In: ACS Biomaterials Science & Engineering, 5(4), p. 1967-1977.-
item.fulltextWith Fulltext-
item.validationecoom 2020-
item.contributorBRAEKEN, Yasmine-
item.contributorCHERUKU, Srujan-
item.contributorSENECA, Senne-
item.contributorSMISDOM, Nick-
item.contributorBerden, Laurens-
item.contributorKruyfhooft, Louis-
item.contributorPENXTEN, Huguette-
item.contributorLUTSEN, Laurence-
item.contributorFron, Eduard-
item.contributorVANDERZANDE, Dirk-
item.contributorAMELOOT, Marcel-
item.contributorMAES, Wouter-
item.contributorETHIRAJAN, Anitha-
item.accessRightsRestricted Access-
crisitem.journal.issn2373-9878-
crisitem.journal.eissn2373-9878-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
2019_ACS Biomaterials Science and Engineering_Braeken.pdf
  Restricted Access
Published version6.42 MBAdobe PDFView/Open    Request a copy
Revised manuscript Braeken et al_bis_changes highlighted.pdf
  Restricted Access
Peer-reviewed author version984.37 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

6
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

15
checked on May 4, 2024

Page view(s)

160
checked on May 20, 2022

Download(s)

114
checked on May 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.