Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29067
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu, Liyang-
dc.contributor.authorQian, Deping-
dc.contributor.authorMarina, Sara-
dc.contributor.authorNugroho, Ferry A. A.-
dc.contributor.authorSharma, Anirudh-
dc.contributor.authorHultmark, Sandra-
dc.contributor.authorHofmann, Anna I.-
dc.contributor.authorKroon, Renee-
dc.contributor.authorBenduhn, Johannes-
dc.contributor.authorSmilgies, Detlef-M.-
dc.contributor.authorVANDEWAL, Koen-
dc.contributor.authorAndersson, Mats R.-
dc.contributor.authorLanghammer, Christoph-
dc.contributor.authorMartin, Jaime-
dc.contributor.authorGao, Feng-
dc.contributor.authorMueller, Christian-
dc.date.accessioned2019-08-28T12:33:31Z-
dc.date.available2019-08-28T12:33:31Z-
dc.date.issued2019-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, 11(24), p. 21766-21774-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/1942/29067-
dc.description.abstractOrganic solar cells are thought to suffer from poor thermal stability of the active layer nanostructure, a common belief that is based on the extensive work that has been carried out on fullerene-based systems. We show that a widely studied non-fullerene acceptor, the indacenodithienothiophene-based acceptor ITIC, crystallizes in a profoundly different way as compared to fullerenes. Although fullerenes are frozen below the glass-transition temperature T-g of the photovoltaic blend, ITIC can undergo a glass-crystal transition considerably below its high T-g of similar to 180 degrees C. Nanoscopic crystallites of a low-temperature polymorph are able to form through a diffusion-limited crystallization process. The resulting fine-grained nanostructure does not evolve further with time and hence is characterized by a high degree of thermal stability. Instead, above T-g, the low temperature polymorph melts, and micrometer-sized crystals of a high-temperature polymorph develop, enabled by more rapid diffusion and hence long-range mass transport. This leads to the same detrimental decrease in photovoltaic performance that is known to occur also in the case of fullerene-based blends. Besides explaining the superior thermal stability of non-fullerene blends at relatively high temperatures, our work introduces a new rationale for the design of bulk heterojunctions that is not based on the selection of high-T-g materials per se but diffusion-limited crystallization. The planar structure of ITIC and potentially other non-fullerene acceptors readily facilitates the desired glass-crystal transition, which constitutes a significant advantage over fullerenes, and may pave the way for truly stable organic solar cells.-
dc.description.sponsorshipWe acknowledge financial support from the Knut and Alice Wallenberg Foundation through the project "Mastering Morphology for Solution-borne Electronics", the Swedish Research Council (grant agreement no. 2016-06146), and the Swedish Foundation for Strategic Research (grant agreement no. RMA15-0052). We thank the Cornell High Energy Synchrotron Source (CHESS), supported by the NSF under award DMR-1332208, for providing time for GIWAXS measurements. J.B. and K.V. acknowledge funding from the German Federal Ministry for Education and Research (BMBF) through the InnoProfile project "Organische p-i-n Bauelemente 2.2" (03IPT602X).-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.rightsThis is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. 2019 American Chemical Society-
dc.subject.otherorganic solar cell; thermally stable photovoltaics; glass-transition temperature; diffusion-limited crystallization; non-fullerene acceptor-
dc.subject.otherorganic solar cell; thermally stable photovoltaics; glass-transition temperature; diffusion-limited crystallization; non-fullerene acceptor-
dc.titleDiffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells-
dc.typeJournal Contribution-
dc.identifier.epage21774-
dc.identifier.issue24-
dc.identifier.spage21766-
dc.identifier.volume11-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notes[Yu, Liyang] Sichuan Univ, Coll Chem, Chengdu 610064, Sichuan, Peoples R China. [Yu, Liyang; Hultmark, Sandra; Hofmann, Anna I.; Kroon, Renee; Mueller, Christian] Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden. [Nugroho, Ferry A. A.; Langhammer, Christoph] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden. [Qian, Deping; Gao, Feng] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden. [Marina, Sara; Martin, Jaime] Univ Basque Country, UPV EHU, POLYMAT, Paseo Manuel de Lardizabal 3, Donostia San Sebastian 20018, Spain. [Marina, Sara; Martin, Jaime] Univ Basque Country, UPV EHU, Polymer Sci & Technol Dept, Fac Chem, Paseo Manuel de Lardizabal 3, Donostia San Sebastian 20018, Spain. [Sharma, Anirudh; Andersson, Mats R.] Flinders Univ S Australia, Flinders Inst Nanoscale Sci & Technol, Sturt Rd, Adelaide, SA 5042, Australia. [Sharma, Anirudh] Univ Bordeaux, LCPO, UMR 5629, B8 Allee Geoffroy St Hilaire, F-33615 Pessac, France. [Benduhn, Johannes] Tech Univ Dresden, Dresden Integrated Ctr Appl Phys & Photon Mat IAP, Nothnitzer Str 61, D-01187 Dresden, Germany. [Benduhn, Johannes] Tech Univ Dresden, Inst Appl Phys, Nothnitzer Str 61, D-01187 Dresden, Germany. [Smilgies, Detlef-M.] CHESS, Ithaca, NY 14850 USA. [Vandewal, Koen] Hasselt Univ, Inst Mat Res IMO IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Belgium. [Martin, Jaime] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain.-
local.publisher.placeWASHINGTON-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acsami.9b04554-
dc.identifier.isi000472683300055-
item.validationecoom 2020-
item.contributorYu, Liyang-
item.contributorQian, Deping-
item.contributorMarina, Sara-
item.contributorNugroho, Ferry A. A.-
item.contributorSharma, Anirudh-
item.contributorHultmark, Sandra-
item.contributorHofmann, Anna I.-
item.contributorKroon, Renee-
item.contributorBenduhn, Johannes-
item.contributorSmilgies, Detlef-M.-
item.contributorVANDEWAL, Koen-
item.contributorAndersson, Mats R.-
item.contributorLanghammer, Christoph-
item.contributorMartin, Jaime-
item.contributorGao, Feng-
item.contributorMueller, Christian-
item.fullcitationYu, Liyang; Qian, Deping; Marina, Sara; Nugroho, Ferry A. A.; Sharma, Anirudh; Hultmark, Sandra; Hofmann, Anna I.; Kroon, Renee; Benduhn, Johannes; Smilgies, Detlef-M.; VANDEWAL, Koen; Andersson, Mats R.; Langhammer, Christoph; Martin, Jaime; Gao, Feng & Mueller, Christian (2019) Diffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells. In: ACS APPLIED MATERIALS & INTERFACES, 11(24), p. 21766-21774.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1944-8244-
crisitem.journal.eissn1944-8252-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
yu 1.pdfPublished version5.71 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.