Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDUMORTIER, Freddy-
dc.contributor.authorKOKUBU, Hiroshi-
dc.date.accessioned2007-11-20T12:45:25Z-
dc.date.available2007-11-20T12:45:25Z-
dc.date.issued2000-
dc.identifier.citationERGODIC THEORY AND DYNAMICAL SYSTEMS, 20(1). p. 85-107-
dc.identifier.issn0143-3857-
dc.identifier.urihttp://hdl.handle.net/1942/2908-
dc.description.abstractWe study the most generic nilpotent singularity of a vector field in R-3 which is equivariant under reflection with respect to a line, say the z-axis. We prove the existence of eight equivalence classes for C-0-equivalence, all determined by the 2-jet. We also show that in certain cases, the Z(2)-equivariant unfoldings generically contain codimension one heteroclinic cycles which are comparable to the Skil'nikov-type homoclinic cycle in non-equivariant unfoldings. The heteroclinic cycles are accompanied by infinitely many horseshoes and also have a reasonable possibility of generating suspensions of Henon-Like attractors, and even Lorenz-like attractors.-
dc.language.isoen-
dc.publisherCAMBRIDGE UNIV PRESS-
dc.titleChaotic dynamics in Z(2)-equivariant unfoldings of codimension three singularities of vector fields in R-3-
dc.typeJournal Contribution-
dc.identifier.epage107-
dc.identifier.issue1-
dc.identifier.spage85-
dc.identifier.volume20-
local.format.pages23-
local.bibliographicCitation.jcatA1-
dc.description.notesLimburgs Univ Ctr, Dept Math, B-3590 Diepenbeek, Belgium. Kyoto Univ, Dept Math, Kyoto 6068502, Japan.Dumortier, F, Limburgs Univ Ctr, Dept Math, Univ Campus, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1017/S0143385700000067-
dc.identifier.isi000086117800006-
item.contributorDUMORTIER, Freddy-
item.contributorKOKUBU, Hiroshi-
item.fullcitationDUMORTIER, Freddy & KOKUBU, Hiroshi (2000) Chaotic dynamics in Z(2)-equivariant unfoldings of codimension three singularities of vector fields in R-3. In: ERGODIC THEORY AND DYNAMICAL SYSTEMS, 20(1). p. 85-107.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
item.validationecoom 2001-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.