Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29110
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConte, Valeria-
dc.contributor.authorBIANCHI, Anna-
dc.contributor.authorSelva, Anna-
dc.contributor.authorPetringa, Giada-
dc.contributor.authorCirrone, G. A. Pablo-
dc.contributor.authorParisi, Alessio-
dc.contributor.authorVanhavere, Filip-
dc.contributor.authorColautti, Paolo-
dc.date.accessioned2019-09-06T13:48:06Z-
dc.date.available2019-09-06T13:48:06Z-
dc.date.issued2019-
dc.identifier.citationPhysica Medica-European Journal of Medical Physics, 64(3), p. 114-122-
dc.identifier.issn1120-1797-
dc.identifier.urihttp://hdl.handle.net/1942/29110-
dc.description.abstractA new mini-TEPC with cylindrical sensitive volume of 0.9mm in diameter and height, and with external diameter of 2.7 mm, has been developed to work without gas flow. With such a mini counter we have measured the physical quality of the 62 MeV therapeutic proton beam of CATANA (Catania, Italy). Measurements were performed at six precise positions along the Spread-Out Bragg Peak (SOBP): 1.4, 19.4, 24.6, 29.0, 29.7 and 30.8 mm, corresponding to positions of clinical relevance (entrance, proximal, central, and distal-edge of the SOBP) or of high lineal energy transfer (LET) increment (distal-dose drop off). Without refilling the microdosimeter with new gas, the measurements were repeated at the same positions 4 months later, in order to study the stability of the response in sealed-mode operation. From the microdosimetric spectra the frequency-mean lineal energy yF and the dose-mean lineal energy yD were derived and compared with average LET values calculated by means of Geant4 simulations. The comparison points out, in particular, a good agreement between microdosimetric yD and the total dose-average LET_d, which is the average LET of the mixed radiation field, including the contribution by nuclear reactions.-
dc.description.sponsorshipThis work was supported by the Italian Institute for Nuclear Physics(INFN). The Belgian nuclear research centre SCK·CEN and HasseltUniversity provide a Phd scholarship-
dc.language.isoen-
dc.publisherELSEVIER SCI LTD-
dc.rights2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved-
dc.subject.otherTEPC; Microdosimetry; Proton therapy; Proton RBE-
dc.titleMicrodosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC-
dc.typeJournal Contribution-
dc.identifier.epage122-
dc.identifier.issue3-
dc.identifier.spage114-
dc.identifier.volume64-
local.bibliographicCitation.jcatA1-
local.publisher.placeTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND-
dc.relation.references[1] PTCOG 2017. Hadrontherapy facilities worldwide in operation. www.ptcog.ch,(updated in January 2017). [2] Raju MR, Amols HI, Bain E, Carpenter SG, Cox RA, et al. A heavy particle comparative study. Part III. OER and RBE. Br J Radiol 1978;51:712–9. [3] Ward JF. Biochemistry of DNA Lesions. Radiat Res, Suppl 1985;8(104):S-103–11. [4] Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 1994;65:7–17. [5] Paganetti H. Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys Med Biol 2002;47(5):747–64. [6] Paganetti H. Relative Biological Effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 2014;59(22):R419–72. [7] Singers Sørensen B, Overgaard J, Bassler N. In vitro RBE-LET dependence for multiple particle types. Acta Oncologica 2011;50:757–62. [8] Rossi HH, Zaider M. Microdosimetry and its Applications p. 21 Berlin Heidelberg, New York: Springer; 1996. [9] Agosteo S, Colautti P, Fazzi A, Moro D, Pola A. A solid state microdosimeter based on a monolithic silicon telescope. Radiat Prot Dosimetry 2006;122(1–4):382–6. [10] Rosenfeld AB. Novel detectors for silicon based microdosimetry, their concepts and applications. Nucl Instr Meth A 2016;809:156–70. [11] Guardiola C, Fleta C, Rodríguez J, Lozano M, Gómez F. Preliminarymicrodosimetric measurements with ultra-thin 3D silicon detectors of a 62 MeV proton beam. JINST 2015;10:P01008. [12] Verona C, Magrin G, Solevi P, Bandorf M, Marinelli M, Stock M, Verona Rinati G. Toward the use of single crystal diamond based detector for ion-beam therapy microdosimetry. Rad Meas 2018;110:25–31. [13] De Nardo L, Cesari V, Donà G, Magrin G, Colautti P, et al. Mini-TEPCs for radiation therapy. Rad Prot Dos 2004;108:345–52. [14] De Nardo L, Cesari V, Iborra N, Conte V, Colautti P, et al. Microdosimetric assessment of Nice therapeutic proton beam biological quality. Phys Med 2004;20(2):71–7. [15] De Nardo L, Moro D, Colautti P, Conte V, Tornielli G, et al. Microdosimetric investigation at the therapeutic proton beam facility of CATANA. Rad Prot Dosim 2004;110(1–4):681–6. [16] Colautti P, Conte V, Selva A, Chiriotti S, Pola A, et al. Microdosimetric study at the CNAO active-scanning carbon-ion beam. Rad Prot Dosim 2018;180(1–4):167–71. [17] Colautti P, Conte V, Selva A, Chiriotti S, Pola A, et al. Miniaturized microdosimetrs as LET monitors: First comparison of calculated and experimental data performed at the 62 MeV/u 12C beam of INFN_LNS with four different detectors. Phys Med 2018;52:113–21. [18] Ziegler JF, Ziegler MD, Biersack JP. SRIM The stopping and range of ions in matter. Nucl Instr Meth B 2010;268:1818–23. [19] Conte V, Moro D, Grosswendt B, Colautti P. Linear energy calibration of mini tissue equivalent gas-proportional counters (TEPC). Multidisciplinary Applications of Nuclear Physics with Ion Beams (ION BEAMS ’12) – AIP Conf Proc, vol. 530. 2013. p. 171–8. [20] Kase Y, Kanai T, Skama M, Tameshige Y, Himkai T, et al. Microdosimetric approach to NIRS-defined biological dose measurements for carbon-ion treatment beam. J Radiat Res 2011;52:59–68. [21] Kellerer AM, Rossi HH. The theory of dual radiation action. Curr Top Radiat Res 1972;8:85–158. [22] ICRU, ICRU Report 36: Microdosimetry (1983). [23] Loncol T, Cosgrove V, Denis JM, Gueulette J, Mazal A, et al. Radiobiological effectiveness of radiation beams with broad LET spectra: microdosimetric analysis using biological weighting functions. Rad Prot Dosim 1994;52:347–52. [24] Cirrone GAP, Cuttone G, Di Rosa F, Raffaele L, Russo G, et al. The geant4 toolkit capability in the hadron therapy field: simulation of a transport beam line. Nucl Phys B 2005;150:54–7. [25] Allison J, Amako K, Apostolakis J, Arce P, Asai M, et al. Recent developments in GEANT4. Nucl Instrum Meth A 2016;835:186–225. [26] Romano F, Cirrone GAP, Cuttone G, Di Rosa F, Mazzaglia SE, Petrovic I, Ristic Fira A, Varisano A. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line. Phys Med Biol 2014;59:2863–82. [27] Petringa G, Cirrone GAP, et al. Development and analysis of the track-LET, dose-LET and RBE calculations with a therapeutical proton and ion beams using Geant4 Monte Carlo code. Physica Medica 2017;42(1):9. https://doi.org/10.1016/j.ejmp.2017.09.023. [28] Cirrone GAP, et al. Clinical and research activities at the CATANA Facility of INFNLNS: from the conventional hadrontherapy to the laser-driven approach. Front. Oncol. 2017. https://doi.org/10.3389/fonc.2017.00223. [29] GUM, Guide to the expression of uncertainty in measurement, JCGM 100; 2008. [30] Pihet P, Menzel HG, Schmidt R, Beauduin M, Wambersie A. Biological weighting function for RBE specification of neutron therapy beams. Intercomparison of 9 European centres. Rad. Prot. Dosim. 1990;31(1-4):437–42. [31] Gueulette J, et al. Intestinal crypt regeneration in mice: A biological system for quality assurance in non-conventional radiation therapy. Radiother Oncol 2005;73(Suppl 2):S148–54. [32] Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J Radiat Res 2013;54(3):494–514.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.source.typeArticle-
dc.identifier.doi10.1016/j.ejmp.2019.06.011-
dc.identifier.isiWOS:000485006200016-
dc.identifier.eissn-
local.provider.typeWeb of Science-
item.validationecoom 2020-
item.fulltextWith Fulltext-
item.contributorConte, Valeria-
item.contributorBIANCHI, Anna-
item.contributorSelva, Anna-
item.contributorPetringa, Giada-
item.contributorCirrone, G. A. Pablo-
item.contributorParisi, Alessio-
item.contributorVanhavere, Filip-
item.contributorColautti, Paolo-
item.accessRightsRestricted Access-
item.fullcitationConte, Valeria; BIANCHI, Anna; Selva, Anna; Petringa, Giada; Cirrone, G. A. Pablo; Parisi, Alessio; Vanhavere, Filip & Colautti, Paolo (2019) Microdosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC. In: Physica Medica-European Journal of Medical Physics, 64(3), p. 114-122.-
crisitem.journal.issn1120-1797-
crisitem.journal.eissn1724-191X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S1120179719301474-main.pdf
  Restricted Access
Published version2.1 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.