Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/29110
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Conte, Valeria | - |
dc.contributor.author | BIANCHI, Anna | - |
dc.contributor.author | Selva, Anna | - |
dc.contributor.author | Petringa, Giada | - |
dc.contributor.author | Cirrone, G. A. Pablo | - |
dc.contributor.author | Parisi, Alessio | - |
dc.contributor.author | Vanhavere, Filip | - |
dc.contributor.author | Colautti, Paolo | - |
dc.date.accessioned | 2019-09-06T13:48:06Z | - |
dc.date.available | 2019-09-06T13:48:06Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Physica Medica-European Journal of Medical Physics, 64(3), p. 114-122 | - |
dc.identifier.issn | 1120-1797 | - |
dc.identifier.uri | http://hdl.handle.net/1942/29110 | - |
dc.description.abstract | A new mini-TEPC with cylindrical sensitive volume of 0.9mm in diameter and height, and with external diameter of 2.7 mm, has been developed to work without gas flow. With such a mini counter we have measured the physical quality of the 62 MeV therapeutic proton beam of CATANA (Catania, Italy). Measurements were performed at six precise positions along the Spread-Out Bragg Peak (SOBP): 1.4, 19.4, 24.6, 29.0, 29.7 and 30.8 mm, corresponding to positions of clinical relevance (entrance, proximal, central, and distal-edge of the SOBP) or of high lineal energy transfer (LET) increment (distal-dose drop off). Without refilling the microdosimeter with new gas, the measurements were repeated at the same positions 4 months later, in order to study the stability of the response in sealed-mode operation. From the microdosimetric spectra the frequency-mean lineal energy yF and the dose-mean lineal energy yD were derived and compared with average LET values calculated by means of Geant4 simulations. The comparison points out, in particular, a good agreement between microdosimetric yD and the total dose-average LET_d, which is the average LET of the mixed radiation field, including the contribution by nuclear reactions. | - |
dc.description.sponsorship | This work was supported by the Italian Institute for Nuclear Physics(INFN). The Belgian nuclear research centre SCK·CEN and HasseltUniversity provide a Phd scholarship | - |
dc.language.iso | en | - |
dc.publisher | ELSEVIER SCI LTD | - |
dc.rights | 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved | - |
dc.subject.other | TEPC; Microdosimetry; Proton therapy; Proton RBE | - |
dc.title | Microdosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 122 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 114 | - |
dc.identifier.volume | 64 | - |
local.bibliographicCitation.jcat | A1 | - |
local.publisher.place | THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND | - |
dc.relation.references | [1] PTCOG 2017. Hadrontherapy facilities worldwide in operation. www.ptcog.ch,(updated in January 2017). [2] Raju MR, Amols HI, Bain E, Carpenter SG, Cox RA, et al. A heavy particle comparative study. Part III. OER and RBE. Br J Radiol 1978;51:712–9. [3] Ward JF. Biochemistry of DNA Lesions. Radiat Res, Suppl 1985;8(104):S-103–11. [4] Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 1994;65:7–17. [5] Paganetti H. Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys Med Biol 2002;47(5):747–64. [6] Paganetti H. Relative Biological Effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 2014;59(22):R419–72. [7] Singers Sørensen B, Overgaard J, Bassler N. In vitro RBE-LET dependence for multiple particle types. Acta Oncologica 2011;50:757–62. [8] Rossi HH, Zaider M. Microdosimetry and its Applications p. 21 Berlin Heidelberg, New York: Springer; 1996. [9] Agosteo S, Colautti P, Fazzi A, Moro D, Pola A. A solid state microdosimeter based on a monolithic silicon telescope. Radiat Prot Dosimetry 2006;122(1–4):382–6. [10] Rosenfeld AB. Novel detectors for silicon based microdosimetry, their concepts and applications. Nucl Instr Meth A 2016;809:156–70. [11] Guardiola C, Fleta C, Rodríguez J, Lozano M, Gómez F. Preliminarymicrodosimetric measurements with ultra-thin 3D silicon detectors of a 62 MeV proton beam. JINST 2015;10:P01008. [12] Verona C, Magrin G, Solevi P, Bandorf M, Marinelli M, Stock M, Verona Rinati G. Toward the use of single crystal diamond based detector for ion-beam therapy microdosimetry. Rad Meas 2018;110:25–31. [13] De Nardo L, Cesari V, Donà G, Magrin G, Colautti P, et al. Mini-TEPCs for radiation therapy. Rad Prot Dos 2004;108:345–52. [14] De Nardo L, Cesari V, Iborra N, Conte V, Colautti P, et al. Microdosimetric assessment of Nice therapeutic proton beam biological quality. Phys Med 2004;20(2):71–7. [15] De Nardo L, Moro D, Colautti P, Conte V, Tornielli G, et al. Microdosimetric investigation at the therapeutic proton beam facility of CATANA. Rad Prot Dosim 2004;110(1–4):681–6. [16] Colautti P, Conte V, Selva A, Chiriotti S, Pola A, et al. Microdosimetric study at the CNAO active-scanning carbon-ion beam. Rad Prot Dosim 2018;180(1–4):167–71. [17] Colautti P, Conte V, Selva A, Chiriotti S, Pola A, et al. Miniaturized microdosimetrs as LET monitors: First comparison of calculated and experimental data performed at the 62 MeV/u 12C beam of INFN_LNS with four different detectors. Phys Med 2018;52:113–21. [18] Ziegler JF, Ziegler MD, Biersack JP. SRIM The stopping and range of ions in matter. Nucl Instr Meth B 2010;268:1818–23. [19] Conte V, Moro D, Grosswendt B, Colautti P. Linear energy calibration of mini tissue equivalent gas-proportional counters (TEPC). Multidisciplinary Applications of Nuclear Physics with Ion Beams (ION BEAMS ’12) – AIP Conf Proc, vol. 530. 2013. p. 171–8. [20] Kase Y, Kanai T, Skama M, Tameshige Y, Himkai T, et al. Microdosimetric approach to NIRS-defined biological dose measurements for carbon-ion treatment beam. J Radiat Res 2011;52:59–68. [21] Kellerer AM, Rossi HH. The theory of dual radiation action. Curr Top Radiat Res 1972;8:85–158. [22] ICRU, ICRU Report 36: Microdosimetry (1983). [23] Loncol T, Cosgrove V, Denis JM, Gueulette J, Mazal A, et al. Radiobiological effectiveness of radiation beams with broad LET spectra: microdosimetric analysis using biological weighting functions. Rad Prot Dosim 1994;52:347–52. [24] Cirrone GAP, Cuttone G, Di Rosa F, Raffaele L, Russo G, et al. The geant4 toolkit capability in the hadron therapy field: simulation of a transport beam line. Nucl Phys B 2005;150:54–7. [25] Allison J, Amako K, Apostolakis J, Arce P, Asai M, et al. Recent developments in GEANT4. Nucl Instrum Meth A 2016;835:186–225. [26] Romano F, Cirrone GAP, Cuttone G, Di Rosa F, Mazzaglia SE, Petrovic I, Ristic Fira A, Varisano A. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line. Phys Med Biol 2014;59:2863–82. [27] Petringa G, Cirrone GAP, et al. Development and analysis of the track-LET, dose-LET and RBE calculations with a therapeutical proton and ion beams using Geant4 Monte Carlo code. Physica Medica 2017;42(1):9. https://doi.org/10.1016/j.ejmp.2017.09.023. [28] Cirrone GAP, et al. Clinical and research activities at the CATANA Facility of INFNLNS: from the conventional hadrontherapy to the laser-driven approach. Front. Oncol. 2017. https://doi.org/10.3389/fonc.2017.00223. [29] GUM, Guide to the expression of uncertainty in measurement, JCGM 100; 2008. [30] Pihet P, Menzel HG, Schmidt R, Beauduin M, Wambersie A. Biological weighting function for RBE specification of neutron therapy beams. Intercomparison of 9 European centres. Rad. Prot. Dosim. 1990;31(1-4):437–42. [31] Gueulette J, et al. Intestinal crypt regeneration in mice: A biological system for quality assurance in non-conventional radiation therapy. Radiother Oncol 2005;73(Suppl 2):S148–54. [32] Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J Radiat Res 2013;54(3):494–514. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.source.type | Article | - |
dc.identifier.doi | 10.1016/j.ejmp.2019.06.011 | - |
dc.identifier.isi | WOS:000485006200016 | - |
dc.identifier.eissn | - | |
local.provider.type | Web of Science | - |
item.fullcitation | Conte, Valeria; BIANCHI, Anna; Selva, Anna; Petringa, Giada; Cirrone, G. A. Pablo; Parisi, Alessio; Vanhavere, Filip & Colautti, Paolo (2019) Microdosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC. In: Physica Medica-European Journal of Medical Physics, 64(3), p. 114-122. | - |
item.accessRights | Restricted Access | - |
item.validation | ecoom 2020 | - |
item.contributor | Conte, Valeria | - |
item.contributor | BIANCHI, Anna | - |
item.contributor | Selva, Anna | - |
item.contributor | Petringa, Giada | - |
item.contributor | Cirrone, G. A. Pablo | - |
item.contributor | Parisi, Alessio | - |
item.contributor | Vanhavere, Filip | - |
item.contributor | Colautti, Paolo | - |
item.fulltext | With Fulltext | - |
crisitem.journal.issn | 1120-1797 | - |
crisitem.journal.eissn | 1724-191X | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S1120179719301474-main.pdf Restricted Access | Published version | 2.1 MB | Adobe PDF | View/Open Request a copy |
SCOPUSTM
Citations
45
checked on Aug 31, 2025
WEB OF SCIENCETM
Citations
45
checked on Sep 2, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.