Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29173
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPolishchuk, Alexander-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2019-09-13T08:40:51Z-
dc.date.available2019-09-13T08:40:51Z-
dc.date.issued2019-
dc.identifier.citationJOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 21(9), p. 2653-2749-
dc.identifier.issn1435-9855-
dc.identifier.urihttp://hdl.handle.net/1942/29173-
dc.description.abstractWe consider the derived category D-G(b)(V) of coherent sheaves on a complex vector space V equivariant with respect to an action of a finite reflection group G. In some cases, including Weyl groups of type A, B, G(2), F-4, as well as the groups G(m, 1, n) = (mu(m))(n) (sic) S-n, we construct a semiorthogonal decomposition of this category, indexed by the conjugacy classes of G. The pieces of this decompositions are equivalent to the derived categories of coherent sheaves on the quotient-spaces V-g/C(g), where C(g) is the centralizer subgroup of g is an element of G. In the case of the Weyl groups the construction uses some key results about the Springer correspondence, due to Lusztig, along with some formality statement generalizing a result of Deligne [23]. We also construct global analogs of some of these semiorthogonal decompositions involving derived categories of equivariant coherent sheaves on C-n, where C is a smooth curve.-
dc.description.sponsorshipThe first author is supported in part by the NSF grant DMS-1400390 and by the Russian Academic Excellence Project '5-100'. The second author is a senior researcher at the FWO and was supported by the FWO grant 1503512N.-
dc.language.isoen-
dc.publisherEUROPEAN MATHEMATICAL SOC-
dc.rightsEuropean Mathematical Society 2019-
dc.subject.otherDerived category; semiorthogonal decomposition; equivariant sheaf; Springer correspondence; reflection group; Hochschild homology; equivariant cohomology-
dc.subject.otherDerived category; semiorthogonal decomposition; equivariant sheaf; Springer correspondence; reflection group; Hochschild homology; equivariant cohomology-
dc.titleSemiorthogonal decompositions of the categories of equivariant coherent sheaves for some reflection groups-
dc.typeJournal Contribution-
dc.identifier.epage2749-
dc.identifier.issue9-
dc.identifier.spage2653-
dc.identifier.volume21-
local.format.pages97-
local.bibliographicCitation.jcatA1-
dc.description.notes[Polishchuk, Alexander] Univ Oregon, Dept Math, Eugene, OR 97403 USA. [Polishchuk, Alexander] Natl Res Univ, Higher Sch Econ, Moscow, Russia. [Van den Bergh, Michel] Univ Hasselt, Dept WNI, Univ Campus, B-3590 Diepenbeek, Belgium.-
local.publisher.placeZURICH-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.4171/JEMS/890-
dc.identifier.isi000476473900002-
item.fulltextWith Fulltext-
item.contributorPolishchuk, Alexander-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationPolishchuk, Alexander & VAN DEN BERGH, Michel (2019) Semiorthogonal decompositions of the categories of equivariant coherent sheaves for some reflection groups. In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 21(9), p. 2653-2749.-
item.accessRightsOpen Access-
item.validationecoom 2020-
crisitem.journal.issn1435-9855-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
polishchuk2019.pdf
  Restricted Access
Published version572.47 kBAdobe PDFView/Open    Request a copy
polishchuk_vdb.pdfPeer-reviewed author version891.78 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.