Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29694
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPAULUS, Andreas-
dc.contributor.authorHendrickx Mylène-
dc.contributor.authorKarakulina Olesia-
dc.contributor.authorKirsanova Maria-
dc.contributor.authorAbakumov Artem-
dc.contributor.authorHadermann Joke-
dc.contributor.authorVAN BAEL, Marlies-
dc.contributor.authorHARDY, An-
dc.date.accessioned2019-10-08T13:18:05Z-
dc.date.available2019-10-08T13:18:05Z-
dc.date.issued2019-
dc.identifier.citationE-MRS Spring Meeting 2019, Nice - France, 27/05/2019 - 31/05/2019-
dc.identifier.urihttp://hdl.handle.net/1942/29694-
dc.description.abstractLayered Li-rich/Mn-rich NMC is characterized by a high initial capacity of more than 250 mAh/h and a lower cost and higher thermal stability than LiCoO2.1 However, its commercialisation is currently still hampered by significant voltage fade, most certainly related to irreversible transition metal migration upon electrochemical cycling.2 For example the reduction of Mn4+ to Mn3+ and subsequent migration causes a transition from a layered to a spinel structure, having a devastating effect on the electrochemical properties. Substitution of Mn4+ by isovalent, redox inactive cations which are supposed to be not prone to migration upon charging, is believed to be a valuable strategy to stabilize the layered structure upon charging.3 Here, we probe the partial substitution of Sn4+ for Mn4+ in Li-rich/Mn-rich NMC. Via an extended series of characterization techniques, including XRD, STEM-EDX, HAADF-STEM and ABF-STEM, the structural properties, including substitution limit, layeredness and cation ordering, of Sn substituted Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 are investigated and correlated with both synthesis method and electrochemical performance.-
dc.description.sponsorshipFWO, project number G040116N-
dc.language.isoen-
dc.titleProbing Sn substitution in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 as a cathode material for Li-ion batteries-
dc.typeConference Material-
local.bibliographicCitation.conferencedate27/05/2019 - 31/05/2019-
local.bibliographicCitation.conferencenameE-MRS Spring Meeting 2019-
local.bibliographicCitation.conferenceplaceNice - France-
local.bibliographicCitation.jcatC2-
dc.relation.references1. Koga, H. et al. Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium‑Ion Batteries: Insights into Their Structure. J. Phys. Chem. C 116, 13497–13506 (2012). 2. Wei, Z. et al. Correlation between transition metal ion migration and the voltage ranges of electrochemical process for lithium-rich manganese-based material. J. Power Sources 281, 7–10 (2015). 3. Deng, Z. Q. & Manthiram, A. Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes. Phys. Chem. C 115, 7097–7103 (2011).-
local.type.refereedNon-Refereed-
local.type.specifiedPresentation-
item.fulltextWith Fulltext-
item.fullcitationPAULUS, Andreas; Hendrickx Mylène; Karakulina Olesia; Kirsanova Maria; Abakumov Artem; Hadermann Joke; VAN BAEL, Marlies & HARDY, An (2019) Probing Sn substitution in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 as a cathode material for Li-ion batteries. In: E-MRS Spring Meeting 2019, Nice - France, 27/05/2019 - 31/05/2019.-
item.contributorPAULUS, Andreas-
item.contributorHendrickx Mylène-
item.contributorKarakulina Olesia-
item.contributorKirsanova Maria-
item.contributorAbakumov Artem-
item.contributorHadermann Joke-
item.contributorVAN BAEL, Marlies-
item.contributorHARDY, An-
item.accessRightsRestricted Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Presentation EMRS spring meeting 2019.pdf
  Restricted Access
Conference material2.43 MBAdobe PDFView/Open    Request a copy
Show simple item record

Page view(s)

56
checked on Sep 7, 2022

Download(s)

6
checked on Sep 7, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.