Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29716
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKNOCKAERT, Griet-
dc.contributor.authorADONS, Dimitri-
dc.contributor.authorCARLEER, Robert-
dc.contributor.authorYPERMAN, Jan-
dc.contributor.authorPEETERS, Roos-
dc.contributor.authorBUNTINX, Mieke-
dc.date.accessioned2019-10-09T13:50:54Z-
dc.date.available2019-10-09T13:50:54Z-
dc.date.issued2015-
dc.identifier.urihttp://hdl.handle.net/1942/29716-
dc.description.abstractIn this report, we have summarized the research strategy and the results from the TETRA project OptiThe_Ox2, which was conducted by Hasselt University in collaboration with 12 companies active in the Belgian and Dutch packaging and food industry (2013-2015). The OptiThe_Ox2 project “Optimization of gas permeability of thermoformed packaging through improved insight in material, process and design” was supported by grants from the Agency of Innovation by Science and Technology (IWT). I would like to thank all the participating companies and Pack4FOOD for their contribution and constructive cooperation. I also thank the companies that supplied the test materials (ANL Plastics, Ter Beke, EuralPack, SABIC and Kuraray EVAL Europe) and I thank Jan Mortier for excellent assistance in thermoforming the samples at Cobelplast, Geert Herremans (Kuraray, EVAL Europe) and Marnik Vaes (SABIC) for presenting and sharing technical information in the second user group meeting and Jelle Sterckx for his help setting up the sterilization process in Bioville. Last but not least, I especially thank Griet Knockaert for the perfect execution of the project and the accurate analysis of all results, as well as my colleagues Dimitri Adons, Nadia Lepot, Gudrun Nowicki, Riet Henno, Bram Bamps and Roos Peeters from the Packaging Technology Center and Martine Van Hamel, Jan Yperman and Robert Carleer from the research group of Applied and Analytical Chemistry. I hope you enjoy reading the results from the OptiThe_Ox2 project. Mieke Buntinx September 2015 Chapter 1 Introduction Chapter 2 Materials and methods Chapter 3 Evaluation of the thickness and gas permeability properties of selected PET sheet materials and their thermoformed trays Chapter 4 Evaluation of the thickness and gas permeability properties of PLA and PLA/EVOH/PLA sheets and their thermoformed trays Chapter 5 Evaluation of the thickness and gas permeability properties of selected PP sheet materials and their thermoformed trays Chapter 6 Evaluation of thickness and barrier properties of selected PP/EVOH/PP materials before and after retorting. Chapter 7 Literature review on additives (Scavengers, Fillers, Nucleating agents, Foaming agents) Chapter 8 Summary of OTR results Chapter 9 Annexes Chapter 10 References-
dc.description.sponsorshipIWT TETRA project 120146-
dc.language.isoen-
dc.titleOptimization of gas permeability of thermoformed packaging through improved insight in material, process and design-
dc.title.alternativeIWT TETRA Eindrapport: OptiThe_Ox2-
dc.typeResearch Report-
local.format.pages142-
local.bibliographicCitation.jcatR2-
local.publisher.placeUHasselt-
dc.relation.references[1] Arena, U., Mastellone, M.L. and F. Perugini, Life cycle assessment of a plastic packaging recycling system, Int. J. LCA, 8 (2) (2003), pp. 92–98. [2] ASTM F-1249 (2006). Standard test method for water vapor transmission rate through plastic film and sheeting using a modulated infrared sensor. [3] ASTM F1307 (2007). Standard test method for oxygen transmission rate through dry packages using a coulometric sensor. [4] ASTM F-1927 (2007). Standard test method for determination of oxygen gas transmission rate, permeability and permeance at controlled relative humidity through barrier materials using a coulometric detector. [5] ASTM F-2476 (2005). Standard test method for the determination of carbon dioxide gas transmission rate (CO2TR) through barrier materials using an infrared detector. [6] Auras, R., Harte, B., Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4, 835-864. [7] L. Avérous, Pollet, E., Environmental Silicate Nano-Biocomposites, Springer-Verlag, London, 2012. [8] Badia, J.D., Stromberg, E., Karlsson, S., Ribes-Greus, R. The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly(ethylene terephthalate) (PET), Polym. Degrad. Stab. 97 (2012) 98–107. [9] Bai, Y.J., Geng, G.L., Sun, D.S., Bian, X.F., Wang, S.R. (2000). Microstructure of CuZnAlMnNi shape memory alloy due to double reversible transformations. Journal of Physics: Condensed Matter, 12, L61. [10] Bao, L., Dorgan, J.R., Knauss, D., Hait, S., Oliveira, N.S., Maruccho, I.M. (2006). Gas permeation properties of poly(lactic acid) revisited. Journal of Membrane Science, 285, 166-172. [11] Berenzon, S., Saguy, I.S. (1998). Oxygen absorbers for extension of crackers shelf-life. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 31(1), 1-5. [12] Blaine, R.L. (2001). Thermal applications note: polymers heat of fusion. [13] Buntinx, M., Willems, G., Knockaert, G., Adons, D., Yperman, J., Carleer, R., Peeters, R. (2014). Evaluation of the thickness and oxygen transmission rate before and after thermoforming mono- and multi-layer sheets into trays with variable depth. Polymers, 6, 3019-3043. [14] Byun, Y., Darby, D., Cooksey, K., Dawson, P., Whiteside, S. (2011). Development of oxygen scavenging system containing a natural free radical scavenger and a transition metal. Food Chemistry, 124, 615-619. [15] Cecchi, T., Passamonti, P., Cecchi, P. (2010). Study of the quality of extra virgin olive oil stored in PET bottles with or without an oxygen scavenger. Food Chemistry, 120, 730-735. [16] Charles, F., Sanchez, J., Gontard, N. (2006). Absorption kinetics of oxygen and carbon dioxide scavengers as part of active modified atmosphere packaging. Journal of Food Engineering, 72, 1-7. [17] Clarinval, A.M., Halleux, J. (2005). Classification of biodegradable polymers. In Smith, R., Biodegradable Polymers for Industrial Applications (pp. 3-31). England: Woodhead Publishing Limited. [18] Cruz, R.S., Camilloto, G.P., dos Santos Pires, A.C. (2012). Oxygen scavengers: an approach on food preservation. In Eissa, A.A. Structure and Function of Food Engineering (pp. 21-42). Land: InTech. [19] Dombre C., Marais, S., Chappey, C., Lixon-Buquet, C., Chalie, P. (2014). The behaviour of wine aroma compounds related to structure and barrier properties of virgin, recycled and active PET membranes. Journal of Membrane Science, 463, 215-225. [20] Duan, Z., Thomas, N.L., Huang, W. (2013). Water vapour permeability of poly(lactic acid) nanocomposites. Journal of Membrane Science, 445, 112-118. [21] Eval, Kuraray. EVOH barrier resins. General brochure. [http://www.eval.eu/media/28322/eval%20film%20high%20res.pdf] [22] Ezquerra, T.A., Sics, I., Nogales, A., Denchey, Z., and Balta-Calleja, J. (2002). Simultaneous crystalline-amorphous phase evolution during crystallization of polymer systems. Europhysics Letters. 59: 417–422. [23] FaerchPlast (2014). [http://www.faerchplast.com/en/packaging/materials/cpet/Pages/default.aspx] [24] Fairgrieve, S. (2005). Nucleating agents. UK: Rapra Technology Limited. [25] Félix, J.S., Alfaro, P., Nerín, C. (2011). Pros & cons of analytical methods to quantify surrogate contaminants from the challenge test in recycled polyethylene terephthalate, Anal. Chim. Acta., 687, 67–74. [26] Franz, R., Mauer, A. and Welle, F. (2004). European survey on post-consumer poly(ethylene terephtalate) (PET) materials to determine contamination levels and maximum consumer exposure from food packages made from recycled PET, Food Addit. Contam., 3, 265–286. [27] Garlotta, D. (2001). A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9, 63-84. [28] Gill, C.O., McGinnis, J.C. (1995). The use of oxygen scavengers to prevent the transient discoloration of ground-beef packaged under controlled, oxygen-depleted atmospheres. Meat Science, 41(1), 19-27. [29] Gill, T.S., Xanthos, M. (1996). Effects of fillers on permeability and mechanical properties of HDPE blown films. Journal of Vinyl & Additive Technology, 2(3), 248-252. [30] Gui, Z., Zhang, W., Lu, C and Cheng, S. (2012). Improving the Barrier Properties of Poly(Lactic Acid) by Blending with Poly(Ethylene-Co-Vinyl Alcohol). Journal of Macromolecular Science, Part B: Physics. Vol 52 (5), 685-700. [31] Halim, L., Pascall, M.A., Lee, J., Finnigan, B. (2009). Effect of pasteurization, high-pressure processing, and retorting on the barrier properties of nylon 6, nylon 6/ethylene vinyl alcohol, and nylon 6/nanocomposites films. Journal of Food Science, 74, N9-N15. [32] ISO 527-3 (2001). Plastics – Determination of tensile properties – Part 3: Test conditions for films and sheets. [33] Kang, D.H., Auras, R., Vorst, K., et al. (2011) An exploratory model for predicting post-consumer recycled PET content in PET sheets, POLYMER TESTING, 30 (1), 60-68. [34] Karayannidis, LG., Psalida, E. Chain extension of recycled poly(ethylene terephthalate) with 2, 2-(1,4-phenylene) bis (2-oxazoline) (2000) J. Appl. Polym. Sci., 77 (10), 2206–2211. [35] Lagaron, J.M., Catala, R., and Gavara, R. (2004). Structural characteristics defining high barrier properties in polymeric materials. Materials Science and Technology. 20: 1–7. [36] Lee, D.S., Shin, D.H., Lee, D.U., Kim, J.C., Cheigh, H.S. (2001). The use of physical carbon dioxide absorbents to control pressure buildup and volume expansion of kimchi packages. Journal of Food Engineering, 48, 183-188. [37] Lopez-Rubio, A., Hernandez-Munoz, P., Gimenez, E., Yamamoto, T., Gavara, R., Lagaron, J.M. (2005). Gas barrier changes and morphological alterations induced by retorting in ethylene vinyl alcohol-based food packaging structures. Journal of Applied Polymer Science, 96, 2192-2202. [38] Lopez-Rubio, A., Giménez, E., Gavara, R., Lagaron, J.M. (2006). Gas barrier changes and structural alterations induced by retorting in a high barrier aliphatic polyketone terpolymer. Journal of Applied Polymer Science, 101, 3348-3356. [39] Lopez-Rubio, A., Lagaron, J.M. (2008). Improving the resistance to humid heat sterilization of EVOH copolymers through blending. Journal of Applied Polymer Science, 109, 174-181. [40] Lyondell Chemical Company. Additives: nucleating and clarifying agents. [http://www.lyondellbasell.com/techlit/techlit/Tech%20Topics/General/Nucleating%20and%20Clarifying%20Agents.pdf] [41] Makradi, A.; Ahzi, S.; Belouettar, S.; Ruch, D. Thermoforming process of semicrystalline polymeric sheets: Modeling and finite element simulations. Polym. Sci. Ser. A 2008, 50, 550–557. [42] Marsh, K., Bugusu, B. (2007). Food packaging – Roles, materials and environmental issues. Journal of Food Science, 72, R39-R55. [43] Massey, L.K. (2003). Permeability properties of plastics and elastomers: a guide to packaging & barrier materials. USA: Plastics Design Library / William Andrew Publishing. [44] Matteucci, S., Yampolskii, Y., Freeman, B.D., Pinnau, I. (2006). Transport of gases and vapors in glassy and rubbery polymers. In Yampolskii, Y., Pinnau, I., Freeman, B., Materials Science of Membranes for Gas and Vapor Separation (pp. 1-47). England, John Wiley & Sons Ltd. [45] Maul, P. (2005). Barrier enhancement using additives. Fillers, Pigments and Additives for Plastics in Packaging Applications, Pira International Conference, Brussels, Belgium, (5-6 December 2005). [46] Mettler Toledo (2010). Thermal analysis: information for users. UserCom 31. [47] Mittal, V. (2012). Crystallinity, mechanical property and oxygen permeability of polypropylene: effect of processing conditions, nucleating agent and compatibilizer. Journal of Thermoplastic Composite Materials, 26, 1407-1423. [48] Mohan, C.O., Ravishankar, C.N., Srinivasa Gopal, T.K., Ashok Kumar, K., Lalitha, K.V. (2009). Biogenic amines formation in seer fish (Scomberomorus commerson) steaks packed with O2 scavenger during chilled storage. Food Research International, 42, 411-416. [49] Mokwena, K.K., Tang, J., Dunne, C.P., Yang, T.C.S., Chow, E. (2009). Oxygen transmission of multilayer EVOH films after microwave sterilization. Journal of Food Engineering, 92, 291-296. [50] Mokwena, K.K., Tang, J. (2012). Ethylene vinyl alcohol: a review of barrier properties for packaging shelf stable foods. Critical Reviews in Food Science and Nutrition, 52, 640-650. [51] Mondo Minerals B.V., Technical Bulletin 1301: Talc in plastics. [http://www.mondominerals.com/uploads/media/mondo_bulletin_plastics.pdf] [52] Mondo Minerals B.V., Technical Bulletin 1302: Increased barrier properties of PE or PP sheets by using platy talc. [http://www.mondominerals.com/uploads/media/K40808_Technical_Bulletin_1302_200711.pdf] [53] Mourits, F.M.R. and Rummens F.H.A. (1977). A critical evaluation of Lennard–Jones and Stockmayer potential parameters and of some correlation methods. Canadian Journal of Chemistry, 55(16), 3007-3020. [54] Park, S.H., Lee, H.S., Choi, J.H., Jeong, C.M., Sung, M.H., Park, H.J. (2012). Improvements in barrier properties of poly(lactic acid) films coated with chitosan or chitosan/clay nanocomposite. Journal of Applied Polymer Science, 125, E675-E680. [55] Peelman, N., Ragaert, P., De Meulenaer, B., Adons, D., Peeters, R., Cardon, L., Van Impe, F., Devlieghere, F. (2013). Application of bioplastics for food packaging. Trends in Food Science & Technology, 32, 128-141. [56] Pettersen, M.K., Nilsson, A., Espedal, A., Kohler, A. (2004a). Prediction of oxygen transmission rate for thermoformed trays. Packaging Technology and Science, 17, 321-332. [57] Plastic Ingenuity (2014). Perfect packaging materials – part 4: CPET plastics. [http://www.plasticingenuity.com/blog/2013/01/08/perfect-packaging-materials-4/] [58] Raheem, D. (2012). Application of plastics and paper as food packaging materials – an overview. Emirates Journal of Food and Agriculture, 25, 177-188. [59] Robertson, G.L. Orientation. In: Food Packaging: Principles and Practice; CRC Press: London, UK, 2013, 152–155. [60] Ronkay, F. (2013). Effect of recycling on the rheological, mechanical and optical properties of polycarbonate. Acta Polytechnica Hungarica, 10, 209-220. [61] Schulman, A. Additive: nucleating agent. [http://www.aschulman.com/Europe/Masterbatch/CategoryPlusFunctionality/84096/24/Additive-Nucleating-Agent.aspx] [62] Sekelik, D.J., Stepanov, E.V., Nazarenko, S., Schiraldi, D., Hiltner, A., Baer, E. (1999). Oxygen barrier properties of crystallized and talc-filled poly(ethylene terephthalate). Journal of Polymer Science Part B: Polymer Physics, 37, 847-857. [63] Shogren, R. (1997). Water vapor permeability of biodegradable polymers. Journal of Environmental Polymer Degradation, 5, 91-95. [64] Siracusa, V. (2012) Food Packaging Permeability Behaviour: A Report. International Journal of Polymer Science, Article ID 302029, 11 pages. [65] Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19, 634-643. [66] Siracusa, V., Blanco, I., Romani, S., Tylewicz, U., Rocculi, P., Rosa, M.D. (2012). Poly(lactic acid)-modified films for food packaging application: physical, mechanical, and barrier behavior. Journal of Applied Polymer Science, 125, E390-E401. [67] Smithers Pira, http://www.smitherspira.com/news/2014/april/demand-for-pet-packaging-material-in-2019, consulted Sep 2015 [68] SpecialChem. How do PP nucleating agents work? [http://www.specialchem4polymers.com/tc/polypropylene-nucleation/index.aspx? id=pp-nucleating] [69] Tewari, G., Jayas, D.S., Jeremiah, L.E., Holley, R.A. (2002). Absorption kinetics of oxygen scavengers. International Journal of Food Science and Technology, 37, 209-217. [70] Tsuji, H., Okino, R., Daimon, H., Fujie, K. (2006). Water vapor permeability of poly(lactide)s: effects of molecular characteristics and crystallinity. Journal of Applied Polymer Science, 99, 2245-2252. [71] Vaes, M. (2013). Thermoform Portfolio SABIC. GGV2 OptiThe_Ox², 14 May 2013. [72] Vandewijngaarden, J., Murariu, M., Dubois, P., Carleer, R., Yperman, J., Adriaensens, P., Schreurs, S., Lepot, N., Peeters, R., Buntinx, M. (2014). Gas permeability properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Journal of Polymers and the Environment, 22, 501-507. [73] Vermeiren, L., Heirlings, L., Devlieghere, F., Debevere, J. (2003). Oxygen, ethylene and other scavengers. In Ahvenainen, R., Novel Food Packaging Techniques (pp. 22-49). England: Woodhead Publishing Limited. [74] Wendt, M.L. (1989). Process for thermoforming plastic materials such as PET. United States Patent, 4,851,178. [75] Yampolskii, Y.P., I., Freeman B.D., Materials Science of Membranes for Gas and Vapor Separation, ed. Y.P. Yampolskii, I., Freeman B.D. 2006, Hoboken, USA: John Wiley & Sons [76] Yeh, J.T., Cuili, L., Tsai, F.C., Jiang, T., Chen, K.N. (2007). Investigation of the oxygen depletion properties of ethylene vinyl acetate resins filled with novel oxygen scavengers. Journal of Polymer Engineering, 24, 245-265. [77] Yeh, J.T., Cui, L., Chang, C.J., Jiang, T., Chen, K.N. (2008). Investigation of the oxygen depletion properties of novel oxygen-scavenging plastics. Journal of Applied Polymer Science, 110, 1420-1434. [78] Zhang, Z., Britt, I.J., Tung, M.A. (1998). Oxygen ingress in plastic retortable packages during thermal processing and storage. Journal of Plastic Film and Sheeting, 14, 287-307. [79] Zhang, Z., Britt, I.J., Tung, M.A. (2001). Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity. Journal of Applied Polymer Science, 82, 1866-1872.-
local.type.specifiedResearch Report-
dc.identifier.urlIWT TETRA-
item.fulltextWith Fulltext-
item.fullcitationKNOCKAERT, Griet; ADONS, Dimitri; CARLEER, Robert; YPERMAN, Jan; PEETERS, Roos & BUNTINX, Mieke (2015) Optimization of gas permeability of thermoformed packaging through improved insight in material, process and design.-
item.accessRightsClosed Access-
item.contributorKNOCKAERT, Griet-
item.contributorADONS, Dimitri-
item.contributorCARLEER, Robert-
item.contributorYPERMAN, Jan-
item.contributorPEETERS, Roos-
item.contributorBUNTINX, Mieke-
Appears in Collections:Research publications
Show simple item record

Page view(s)

18
checked on Jul 15, 2022

Download(s)

10
checked on Jul 15, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.