Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29755
Title: Polyhydroxyalkanoates for Food Packaging Applications.
Authors: Ragaert, Peter
BUNTINX, Mieke 
MAES, Caroline 
VANHEUSDEN, Chris 
PEETERS, Roos 
Wang, Sisi
D’hooge, Dagmar R
Cardon, Ludwig
Issue Date: 2019
Source: Reference Module in Food Science., p. 1-9
Abstract: Polyhydroxyalkanoates (PHAs) are a promising group of bioplastics as different renewable resources and microorganisms or plants can be used to produce these biobased and biodegradable polymers with a wide range of properties. The most important PHAs are poly(3-hydroxybutyrate) (PHB) and the copolymers poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Copolymerization is one of the techniques to improve physical–mechanical properties of PHAs as well as other techniques such as blending. Their gas and water vapor permeabilities offer opportunities to be applied as food packaging materials, in combination with the fact that PHAs can be processed into different products including films, trays and coatings on other biobased materials (e.g. paperboard). This article describes the synthesis and production processes of several PHA granulates. The processing parameters and related properties focusing on mechanical, barrier, sealing and heat resistance properties of several PHAs are discussed and innovative technologies to improve these properties for specific applications are described. Finally, compostability of PHAs as an end-of-life option is discussed. Although current high production costs limit the competitiveness in commercial applications, PHAs might have high potential as bio-based/biodegradable plastic packaging materials in the transition towards a circular economy.
Notes: Akaraonye, E., Keshavarz, T., Roy, I. (2010). Production of polyhydroxyalkanoates: the future green materials of choice. Journal of Chemical Technology and Biotechnology, 85, 732-743. Andersson, C. (2008). New ways to enhance the functionality of paperboard by surface treatment – a review. Packaging Technology and Science, 21, 6, 339-373. Anjum, A., Zuber, M., Zia, K.M., Noreen, A., Anjum, M.N., Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. International Journal of Biological Macromolecules, 89, 161-174. Arrieta, M.P., Fortunati, E., Dominici, F., Rayon, E., Lopez, J., Kenny, J.M. (2014). Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydrate Polymers, 107, 16-24. Bugnicourt, E., Cinelli, P., Lazzeri, A., Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8, 11, 791-808. Castro-Mayorga, J. L., Fabra, M. J., Pourrahimi, A. M., Olsson, R. T., & Lagaron, J. M. (2017). The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly (3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food and Bioproducts Processing, 101, 32-44. Chandra, R., Rustgi R. (1998). Biodegradable polymers. Progress in Polymer Science, 23, 1273–1335. Chen, G.Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38, 8, 2434-2446. Chen, G.Q. (2010). Plastics from Bacteria : Natural Functions and Applications. Berlin, Heidelberg: Springer; p. 237-255. Noda, I., Lindsey, S.B. and Caraway, D., Nodax™ Class PHA Copolymers: Their Properties and Applications.? Dobrogojski, J., Spychalski, M., Lucinski, R., Borek, S. (2018). Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiologiae Plantarum, 40, 162. Drieskens, M. Peeters, R., Mullens, J., Franco, D., Lemstra, P. J., Hristova, D. G. (2009) Structure versus properties relationship of poly(lactic acid). I. effect of crystallinity on barrier properties, Journal of Polymer Science, Part B: Polymer Physics, 47 (22) 2247-2258 El-Hadi, A., Schnabel, R., Straube, E., Müller, G., Riemschneider, M. (2002). Effect of Melt Processing on Crystallization Behavior and Rheology of Poly(3-hydroxybutyrate) (PHB) and its Blends. Macromolecular Materials and Engineering, 287, 363-372. European Bioplastics (2016). What are bioplastics? (https://docs.european-bioplastics.org/2016/publications/fs/EUBP_fs_what_are_bioplastics.pdf) European Bioplastics (2017). Bioplastics market data 2017. Global production capacities of bioplastics 2017-2022 (https://docs.european-bioplastics.org/publications/market_data/2017/Report_Bioplastics_Market_Data_2017.pdf) Farmahini-Farahani, M. Khan, A., Lu, P., Bedane, Ah, Eic, M., Xiao, H.n (2017). Surface morphological analysis and water vapor barrier properties of modified Cloisite 30B/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composites. Applied Clay Science, 135, 27-34 Keshavarz, T., Roy, I., (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology, 13, 321-326. Keskin, G., Kizil, G., Bechelany, M., Pochat-Bohatier, C., Oner, M. (2017). Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure and Applied Chemistry, 89, 12, 1841-1848. Koning, G. J. M. D., Lemstra, P.J. (1993). Crystallization phenomena in bacterial poly[ ( R)-3- hyd roxybutyrate]: 2. Embrittlement and rejuvenation. Polymer, 34, 19, 4089-4094. Koning, G.J.MD.D, Scheeren, A.H.C., Lemstra, P.J. (1994). Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 3. Toughening via texture changes. Polymer, 35, 21, 4598-4605. Kosseva, M.R., Rusbandi, E. (2018). Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. International Journal of Biological Macromolecules, 107, 762-778. Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H.N., Reis, M.A.M. (2017). Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering, 4, 55. Kovalcik, A., Machovsky, M., Kozakova, Z., Koller, M. (2015) Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. Reactive and Functional Polymers, 94C, 25-34. Kuraray Co. Ltd. Kuraray – EVALTM: http://www.evalevoh.com (last accessed 28 December 2018) Kurusu, R.S., Demarquette, N.R., Gauthier, C., Chenal, J.M. (2014). Effect of ageing and annealing on the mechanical behaviour and biodegradability of a poly(3-hydroxybutyrate) and poly(ethylene-co-methyl-acrylate-co-glycidyl-methacrylate) blend. Polymer International, 63, 6, 1085-1093. Kurusu, R.S., Siliki, C.A., David, É, Demarquette, N.R., Gauthier, C., Chenal, J.M. (2015). Incorporation of plasticizers in sugarcane-based poly(3-hydroxybutyrate)(PHB): Changes in microstructure and properties through ageing and annealing. Industrial Crops and Products, 72, 166-174. Lange, J., Wyser, Y. (2003) Recent Innovations in Barrier Technologies for Plastic Packaging—A Review. Packag. Technol. Sci., 16, 149–158. doi: 10.1002/pts.621. Lagaron, J. M., Catala, R., Gavara, R. (2004) Structural Characteristics Defining High Barrier Properties in Polymeric Materials. Mater. Sci. Technol., 20, 1–7. doi: 10.1179/026708304225010442. Maes, C., Luyten, W., Herremans, G., Peeters, R., Carleer, R., Buntinx, M. (2018). Recent updates on the barrier properties of ethylene vinyl alcohol copolymer (EVOH): a review. Polymer rReviews, 58, 2, 209-246. Massey, L.K. (2002) Permeability properties of plastics and elastomers. William Andrew Inc., New York Mckeen, L. W. (2012) Permeability Properties of Plastics and Elastomers; William Andrew: Waltham, USA and Oxford, UK Peelman, N., Ragaert, P., Ragaert, K., De Meulenaer, B., Devlieghere, F., Cardon, L. (2015). Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA. Journal of Applied Polymer Science, 42305. Peelman, N., Ragaert, P., Ragaert, K., Erkoç, M., Van Brempt, W., Faelens, F., Devlieghere, F., De Meulenaer, B., Cardon, L. (2018). Heat resistance of biobased materials, evaluation and effect of processing techniques and additives. Polymer engineering and science, 58, 4, 513-520. Philip, S., Keshavarz, T., Roy, I. (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology, 82, 3, 233-247. Raza, Z.A., Riaz, S., Banat, I.M. (2018). Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnology Progress, 34, 29-41. Sanchez‐Garcia, M.D., Gimenez, E., Lagaron, J.M. (2008). Morphology and barrier properties of nanobiocomposites of poly(3‐hydroxybutyrate) and layered silicates. Journal of Applied Polymer Science, 108, 5, 2787-2801. Siracusa, V., Ingrao, C., Karpova, S.G., Olkhov, Anatoly, A., Iordanskii, A.L. (2017) Gas transport and characterization of poly(3 hydroxybutyrate) films, European Polymer Journal, 91, 149-161 Siracusa, V., Blanco; I., Romani, S., Tylewicz; U., Rocculi; P., Rosa; M.D. (2012) Poly(lactic acid)‐modified films for food packaging application: Physical, mechanical, and barrier behaviour, J Appl Polym Sci 125, 390–401 Somleva, M.N., Peoples, O.P., Snell, K.D. (2013). PHA Bioplastics, Biochemicals, and Energy from Crops. Plant Biotechnology Journal, 11, 2, 233-252. Vandewijngaarden, J. Murariu, M., Dubois, P., Carleer, R., Yperman, J., Adriaensens, P., Schreurs, S., Lepot, N., Peeters, R., Buntinx, M. (2014). Gas Permeability Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Journal of Polymers and the Environment, 22, 4, 501-507. Vandewijngaarden, J., Murariu, M., Dubois, P., Carleer, R., Yperman, J., D’Haen, J., Peeters, R., Buntinx, M. (2016a). Effect of ultrafine talc on crystallization and end-use properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Journal of Applied Polymer Science, 133, 43808. Vandewijngaarden, J., Wauters, R., Murariu, M., Dubois, P., Carleer, R., Yperman, J., D’Haen, J., Ruttens, B., Schreurs, S., Lepot, N., Peeters, R., Buntinx, M. (2016b). Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/Organomodified Montmorillonite Nanocomposites for Potential Food Packaging Applications. Journal of Polymers and the Environment, 24, 104-118. Vijayendra, S.V.N., Shamala, T.R. (2014). Film forming microbial biopolymers for commercial applications—A review. Critical Reviews in Biotechnology, 34, 4, 338-357. Wang, S., Capoen, L., D’hooge, D.R., Cardon, L. (2017). Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly(lactic acid) filaments into 3D printed materials?. Plastics, Rubber and Composites, 47, 1, 9-16. World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company, The New Plastics Economy — Rethinking the future of plastics (2016, http://www.ellenmacarthurfoundation.org/publications) Yeo, J.C.C., Muiruri, J.K., Thitsartarn, W., Li, Z., He, C. (2018). Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Materials Science & Engineering C, 92, 1092-1116.
Keywords: PHA, Biopolymers, Synthesis, Recovery, Purification, Polymer processing, Gas barrier, Water barrier, Heat resistance, Gas permeability, Food packaging, Blending, Copolymers, Biodegradation, Bioplastics
Document URI: http://hdl.handle.net/1942/29755
ISBN: 9780081005965
DOI: 10.1016/B978-0-08-100596-5.22502-X
Rights: 2019 Elsevier Inc. All rights reserved. Academic Press
Category: B2
Type: Book Section
Appears in Collections:Research publications

Show full item record

Page view(s)

914
checked on Jun 29, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.