Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29756
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKathuria, Ajay-
dc.contributor.authorPauwels, An-Katrien-
dc.contributor.authorBUNTINX, Mieke-
dc.contributor.authorShin, Joongmin-
dc.contributor.authorHarding, Trevor-
dc.date.accessioned2019-10-16T07:40:17Z-
dc.date.available2019-10-16T07:40:17Z-
dc.date.issued2019-
dc.identifier.citationJournal of Inclusion Phenomena and Macrocyclic Chemistry, 95(1-2), p. 91-98-
dc.identifier.issn1388-3127-
dc.identifier.urihttp://hdl.handle.net/1942/29756-
dc.description.abstractMore than 15,000 types of metal–organic framework (MOF) structures have been synthesized to date. The vast majority of these structures have been synthesized by linking transition metal ions with organic linkers, which limits their potential applications due to toxicity and environmental concerns. In this study we synthesized, bio-based nano-porous crystalline MOF using γ-Cyclodextrin (γ-CD) and potassium ions by vapor diffusion process. Gamma-cyclodextrin MOF (CDMOF) crystals were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA). We hereby report inclusion complex (IC) formation between nano-porous γ-CDMOF and ethanol molecules. Ethanol, a generally recognized as safe compound and well-known antibacterial and antimicrobial compound, can be used for various industrial applications such as energy, food packaging, pharmaceuticals, gas sensing devices etc. Around ~ 20% ethanol encapsulation was observed in the CDMOF as substantiated by FTIR, TGA and differential scanning calorimetry. Observations from XRD supported the IC formation. CDMOF analyzed before and after IC formation using SEM and XRD indicated that CDMOF crystals retained the crystal structure after the complex formation. This study helps advance our understanding of ethanol-CDMOF host–guest interactions.-
dc.language.isoen-
dc.rightsSpringer Nature B.V. 2019-
dc.subject.otherγ-Cyclodextrin; Metal organic framework; Ethanol; Encapsulation; Nano-porous; Inclusion complex-
dc.titleInclusion of ethanol in a nano-porous, bio-based metal organic framework-
dc.typeJournal Contribution-
dc.identifier.epage98-
dc.identifier.issue1-2-
dc.identifier.spage91-
dc.identifier.volume95-
local.bibliographicCitation.jcatA1-
dc.relation.references1. Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999) 2. Lee, J., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.T., Hupp, J.T.: Metal-organic framework materials as catalyst. Chem. Soc. Rev. 38, 1450–1459 (2009) 3. Kathuria, A., Abiad, M.G., Auras, R.: Deterioration of metal organic framework crystal structure during the fabrication of poly(L-lactic acid) mixed matrix membranes. Polym. Int. 62, 1144–1151 (2013) 4. Al-Ghamdi, S., Kathuria, A., Abiad, M.G., Auras, R.: Synthesis of nanoporous carbohydrate metal organic framework and encapsulation of acetaldehyde. J. Cryst. Growth 451, 72–78 (2016) 5. Subramanian, M., Subramanian, K.S., Kumar, V., Rajan, J., Nagaraj, V.: Cyclodextrin inclusion complex for smart delivery of volatiles in nano-food systems. In: Paliyath, G., Subramanian, J., Lim, L.-T., Subramanian, K.S., Handa, A.K., Mattoo, A.K. (eds.) Post Harvest Biology and Nanotechnology, pp. 365–381. Wiley, Hoboken (2018) 6. Han, Y., Liu, W., Huang, J., Qiu, S., Zhong, H., Liu, D., Liu, J.: Cyclodextrin-based metal-organic frameworks (CD-MOFs) in pharmaceutics and biomedicine. Pharmaceutics 10, 271 (2018) 7. Chopra, S., Dhumal, S., Abeli, P., Beaudry, R., Almenar, E.: Metal-organic frameworks have utility in adsorption and release of ethylene and 1-methylcyclopropene in fresh produce packaging. Postharvest Biol. Technol. 130, 48–55 (2017) 8. Prochowicz, D., Kornowicz, A., Lewinski, J.: Interactions of native cyclodextrins with metal ions and inorganic nanoparticles: fertile landscape for chemistry and materials science. Chem. Rev. 117(22), 13461–13501 (2017) 9. Furukawa, Y., Ishiwata, T., Sugikawa, K., Kokado, K., Sada, K.: Nano-and microsized cubic gel particles from cyclodextrin metal-organic frameworks. Angew. Chem. 51(42), 10566–10569 (2012) 10. He, Y., Zhang, W., Guo, T., Zhang, G., Qin, W., Zhang, L., Wang, C., Zhu, W., Yang, M., Hu, X., Singh, V., Wu, L., Gref, R., Zhang, J.: Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharmaceutica Sinica B 9(1), 97–106 (2018) 11. Kathuria, A., Al-Ghamdi, S., Abiad, M.G., Auras, R.: Multifunctional ordered bio-based mesoporous framework from edible compounds. J. Biobased Mater. Bioenergy 12, 449–454 (2018) 12. Shin, J., Harte, B., Ryser, E., Selke, S.: Active packaging of fresh chicken breast, with allyl isothiocyanate (AITC) in combination with modified atmosphere packaging (MAP) to control the growth of pathogens. J. Food Sci. 75, M65–M71 (2010) 13. Shinde, R., Rodov, V., Krishnakumar, S., Subramanian, J.: Active and intelligent packaging for reducing postharvest looses of fruits and vegetables. In: Paliyath, G., Subramanian, J., Lim, L.-T., Subramanian, K.S., Handa, A.K., Mattoo, A.K. (eds.) Post Harvest Biology and Nanotechnology, pp. 171–190. Wiley, Hoboken (2018) 14. Lee, Y.S., Beaudry, R., Kim, J.N., Harte, B.: Development of a (1-MCP) sachet release system. J. Food Sci. 71, C1–C6 (2006) 15. Broady, A.L., Strupinsky, E.R., Kline, L.R.: Introduction. In: Broady, A.L., Strupinsky, E.R., Kline, L.R. (eds.) Antimicrobial Packaging in Active Packaging for Food Applications, pp. 16–22. CRC Press, Washington, DC (1998) 16. Bertacche, V., Lorenzi, N., Nava, D., Pini, E., Sinico, C.: Host-guest interaction study of resveratrol with natural and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 55, 279–287 (2006) 17. Romanazzia, G., Smilanickb, J.L., Feliziania, E., Droby, S.: Integrated management of postharvest gray mold on fruit crops. Postharvest Biol. Technol. 113, 69–76 (2016) 18. Rezk, A., Al-Dadah, R., Mahmoud, S., Elsayed, A.: Investigation of ethanol/metal organic frameworks for low temperature adsorption cooling. Appl. Energ. 112, 1025–1031 (2013) 19. Saha, B.B., El-Sharkawy, I.I., Miyazaki, T., Koyama, S., Henninger, S.K., Herbst, A., Janiak, C.: Ethanol adsorption onto metal organic framework: theory and experiment. Energy 79, 363–370 (2015) 20. Savic-Gajic, I., Savic, I.M., Nikolic, V.D., Nikolic, L.B., Popsavin, M.M., Kapor, A.J.: Study of the solubility, photostability and structure of inclusion complexes of carvedilol with β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 86(1–2), 7–17 (2016) 21. Nikolic, I.L., Savic, I.M., Popsavin, M.M., Rakic, S.J., Mihajilov-Krstev, T.M., Ristic, I.S., Eric, S.P., Savić-Gajic, I.M.: Preparation, characterization and antimicrobial activity of inclusion complex of biochanin A with (2-hydroxypropyl)-β-cyclodextrin. J. Pharm. Pharmacol. 70(11), 1485–1493 (2018) 22. Savic, I.M., Nikolic, V.D., Savic-Gajic, I., Nikolic, L.B., Radovanovic, B.C., Mladenovic, J.D.: Investigation of properties and structural characterization of the quercetin inclusion complex with (2-hydroxypropyl)-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 82(3–4), 383–394 (2015) 23. Savic, I.M., Savic-Gajic, I.M., Nikolic, V.D., Nikolic, L.B., Radovanovic, B.C., Milenkovic-Andjelkovic, A.: Enhencement of solubility and photostability of rutin by complexation with β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 86(1–2), 33–43 (2016) 24. Boonyarattanakalin, K., Viernstein, H., Viernstein, H., Wolschann, P., Lawtrakul, L.: Influence of ethanol as a co-solvent in cyclodextrin inclusion complexation: a molecular dynamics study. Sci. Pharm. 83(2), 387–399 (2015) 25. Yoshii, H., Kometani, T., Furuta, T., Watanabe, Y., Linko, Y.-Y., Linko, P.: Formation of the inclusion complexes of cyclodextrin with ethanol under anhydrous conditions. Biosci. Biotechnol. Biochem. 62(11), 2166–2170 (1998) 26. Smith, B.C.: Infrared Spectral Interpretation: A Systematic Approach. Publisher CRC Press, Boca Raton (2018) 27. Ma, X., Zhang, F., Han, K., Yang, B., Song, G.: Evaporation characteristics of acetone-butanol-ethanol and diesel blends droplets at high ambient temperatures. Fuel 160, 43–49 (2015) 28. Sinlikhitkul, N., Toochinda, P., Lawtrakul, L., Kuropakornpong, P., Itharat, A.: Encapsulation of plumbagin using cyclodextrins to enhance plumagin stability: computational simulation, preparation, characterization, and application. J. Incl. Phenom. Macrocycl. Chem. (2018). https://doi.org/10.1007/s10847-018-0870-5 29. Forgan, R.S., Furukawa, H., Gassensmith, J.J., Slawin, A.M.Z., Yaghi, O.M., Stoddart, J.F.: Metal-organic frameworks from edible products. Angew. Chem. 49, 8630–8634 (2010)-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1007/s10847-019-00920-y-
dc.identifier.isi000485967900010-
item.fulltextWith Fulltext-
item.contributorKathuria, Ajay-
item.contributorPauwels, An-Katrien-
item.contributorBUNTINX, Mieke-
item.contributorShin, Joongmin-
item.contributorHarding, Trevor-
item.fullcitationKathuria, Ajay; Pauwels, An-Katrien; BUNTINX, Mieke; Shin, Joongmin & Harding, Trevor (2019) Inclusion of ethanol in a nano-porous, bio-based metal organic framework. In: Journal of Inclusion Phenomena and Macrocyclic Chemistry, 95(1-2), p. 91-98.-
item.accessRightsRestricted Access-
item.validationecoom 2020-
crisitem.journal.issn1388-3127-
crisitem.journal.eissn1573-1111-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Kathuria2019_Article_InclusionOfEthanolInANano-poro.pdf
  Restricted Access
Published version1.96 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.