Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29854
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Mulder, Wim-
dc.contributor.authorRengs, Bernhard-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorFent, Thomas-
dc.contributor.authorVERBEKE, Geert-
dc.date.accessioned2019-10-28T08:27:54Z-
dc.date.available2019-10-28T08:27:54Z-
dc.date.issued2019-
dc.identifier.citationJOURNAL OF SIMULATION, 13(3), p. 195-208-
dc.identifier.issn1747-7778-
dc.identifier.urihttp://hdl.handle.net/1942/29854-
dc.description.abstractGaussian process (GP) emulation is a relatively recent statistical technique that provides a fast-running approximation to a complex computer model, given training data generated by the considered model. Despite its sound theoretical foundation, GP emulation falls short in practical applications where the training dataset is very large, due to numerical instabilities in inverting the correlation matrix. We show how GP emulation can be extended to handle large training sets by first dividing the training set into smaller subsets using cluster analysis, then training an emulator for each subset, and finally combining the emulators using an artificial neural network (ANN). Our work has also conceptual relevance, as it shows how to solve a big data problem by introducing a local level in input space, where each emulator specialises in a certain subregion, and a global level, where the identified local features of the computer model are combined into a global view.-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS LTD-
dc.rights2018 Operational Research Society-
dc.subject.otherGaussian process emulation; artificial neural networks; cluster analysis; inverse distance weighting; agent-based models-
dc.subject.otherGaussian process emulation; artificial neural networks; cluster analysis; inverse distance weighting; agent-based models-
dc.titleExtending Gaussian process emulation using cluster analysis and artificial neural networks to fit big training sets-
dc.typeJournal Contribution-
dc.identifier.epage208-
dc.identifier.issue3-
dc.identifier.spage195-
dc.identifier.volume13-
local.format.pages14-
local.bibliographicCitation.jcatA1-
dc.description.notes[De Mulder, Wim; Molenberghs, Geert; Verbeke, Geert] Katholieke Univ Leuven, L BioStat, Leuven, Belgium. [Rengs, Bernhard; Fent, Thomas] VID OAW, IIASA, Wittgenstein Ctr, Vienna, Austria. [Molenberghs, Geert; Verbeke, Geert] Univ Hasselt, I BioStat, Hasselt, Belgium.-
local.publisher.placeABINGDON-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/17477778.2018.1489936-
dc.identifier.isi000486054900003-
item.validationecoom 2020-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.contributorDe Mulder, Wim-
item.contributorRengs, Bernhard-
item.contributorMOLENBERGHS, Geert-
item.contributorFent, Thomas-
item.contributorVERBEKE, Geert-
item.fullcitationDe Mulder, Wim; Rengs, Bernhard; MOLENBERGHS, Geert; Fent, Thomas & VERBEKE, Geert (2019) Extending Gaussian process emulation using cluster analysis and artificial neural networks to fit big training sets. In: JOURNAL OF SIMULATION, 13(3), p. 195-208.-
crisitem.journal.issn1747-7778-
crisitem.journal.eissn1747-7786-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
demulder2018.pdf
  Restricted Access
Published version1.82 MBAdobe PDFView/Open    Request a copy
541b.pdfPeer-reviewed author version516.9 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.