Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2997
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJiang, YB-
dc.contributor.authorZhao, J-
dc.contributor.authorRosen, C-
dc.contributor.authorGEUSENS, Piet-
dc.contributor.authorGenant, HK-
dc.date.accessioned2007-11-23T10:15:59Z-
dc.date.available2007-11-23T10:15:59Z-
dc.date.issued1999-
dc.identifier.citationJOURNAL OF CLINICAL DENSITOMETRY, 2(4). p. 423-433-
dc.identifier.issn1094-6950-
dc.identifier.urihttp://hdl.handle.net/1942/2997-
dc.description.abstractThe bones of the human skeleton serve a mechanical function besides providing a reservoir for calcium and hematopoietic homeostasis. When mechanically challenged, they usually respond and adapt; failure to do so can result in fracture. The mechanical behavior of bone is determined by bone mass and its material proper ties and by its geometry and architecture. Therefore, in vivo noninvasive measurements of bone mass, geometry, and structure can predict bone strength and are usually employed as a useful-if not always reliable-way to estimate bone fragility, whereas direct bone biomechanical testing in vitro can provide detailed information about mechanical strength. Because bone strains are likely to be important regulators of bone mass and strength, exercise protocols designed to counteract the effects of osteoporosis should load the target bone with repeated high peak forces and high strain rates or high impacts on a long-term basis. Such a protocol creates varied strain distributions throughout the bone structure, producing short, repeated strains on the bone in directions to which it is unaccustomed. Exercise in this manner can maintain and perhaps increase bone mass and improve mechanical properties and neuromuscular competency, reducing skeletal fragility and the predisposition to falls.-
dc.language.isoen-
dc.publisherHUMANA PRESS INC-
dc.subject.otherbone biomechanics; bone mass and structure; mechanical usage; densitometry; physical exercise-
dc.titlePerspectives on bone mechanical properties and adaptive response to mechanical challenge-
dc.typeJournal Contribution-
dc.identifier.epage433-
dc.identifier.issue4-
dc.identifier.spage423-
dc.identifier.volume2-
local.format.pages11-
dc.description.notesUniv Calif San Francisco, Dept Radiol, Osteoporosis & Arthrit Res Grp, San Francisco, CA 94143 USA. Univ Maine, St Joseph Hosp, Maine Ctr Osteoporosis Res & Educ, Bangor, ME 04401 USA. Limburgs Univ Ctr, Clin Res Ctr Bone & Joint Dis, Dr L Willems Inst, Diepenbeek, Belgium.Jiang, YB, Univ Calif San Francisco, Dept Radiol, Osteoporosis & Arthrit Res Grp, San Francisco, CA 94143 USA.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/S1094-6950(06)60408-3-
dc.identifier.isi000085084200009-
item.fullcitationJiang, YB; Zhao, J; Rosen, C; GEUSENS, Piet & Genant, HK (1999) Perspectives on bone mechanical properties and adaptive response to mechanical challenge. In: JOURNAL OF CLINICAL DENSITOMETRY, 2(4). p. 423-433.-
item.fulltextNo Fulltext-
item.validationecoom 2001-
item.contributorJiang, YB-
item.contributorZhao, J-
item.contributorRosen, C-
item.contributorGEUSENS, Piet-
item.contributorGenant, HK-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

44
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

37
checked on Sep 28, 2024

Page view(s)

72
checked on Nov 7, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.