Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/30021
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DUN, Kim-
dc.contributor.authorManto, Mario-
dc.date.accessioned2019-11-20T12:38:58Z-
dc.date.available2019-11-20T12:38:58Z-
dc.date.issued2019-
dc.identifier.citationNeuro2019, Niigata (Japan), 25/7/19-28/7/19-
dc.identifier.urihttp://hdl.handle.net/1942/30021-
dc.description.abstractNon-invasive brain stimulation (NIBS) is a promising technique that has been proven to modify neural excitability using electric current (transcranial electric current, TES) or magnetic pulses (transcranial magnetic stimulation, TMS) (Janssen, Oostendorp, & Stegeman, 2015; Woods et al., 2016). Most research focused on stimulating the area directly beneath the electrodes or the coil to directly facilitate or inhibit the functioning of that area (e.g. motor cortex stimulation). Recently, a different strategy has been introduced in NIBS research, focusing on the cerebellum as a window upon functional connectivity networks (van Dun, Bodranghien, Manto, & Mariën, 2017). Indeed, the cerebellum is strongly connected to the motor and associative regions of the cerebrum via closed loops running in parallel, allowing communication in both directions. In addition, the cerebellum has the highest density of neurons and has a dense cortical cellularity, making it very susceptible to NIBS (van Dun & Manto, 2018; van Dun, Overwalle, Manto, & Marien, 2018). EEG studies using cerebellar TMS have shown that cerebellar stimulation induces activity in the contralateral cerebral hemisphere that spreads towards the bilateral prefrontal cortices and to the ipsilateral cerebral hemisphere within 40ms (Arimatsu, Sato, Ge, Ueno, & Iramina, 2007; Iramina, Maeno, Kowatari, & Ueno, 2002; Iramina, Maeno, Nonaka, & Ueno, 2003; Iramina, Maeno, & Ueno, 2004; Iwahashi et al., 2009). In addition, studies using cerebellar TES showed altered excitatory and inhibitory cortico-cortical and cerebello-cortical networks (e.g. Chothia, Doeltgen, & Bradnam, 2016; Galea, Jayaram, Ajagbe, & Celnik, 2009). Modulating remote functional connectivity via the cerebellum is especially interesting for subcortical lesions. These lesions are not reachable by NIBS but can disturb networks involving several cortical regions. By targeting the cerebellum with NIBS, it might be possible to target the whole disrupted network and regain some connectivity between the affected regions (van Dun et al., 2018). We will present functional MRI (fMRI) and behavioral data of a patient with a left basal ganglia hemorrhagic stroke resulting in hypokinetic dysarthria. Cerebellar stimulation (anode over left, cathode over right cerebellar hemisphere) was applied during language therapy. fMRI was taken before and after an 8-week protocol.-
dc.language.isoen-
dc.titleNon-invasive cerebellar stimulation to rearrange disrupted functional networks-
dc.typeConference Material-
local.bibliographicCitation.conferencedate25/7/19-28/7/19-
local.bibliographicCitation.conferencenameNeuro2019-
local.bibliographicCitation.conferenceplaceNiigata (Japan)-
local.bibliographicCitation.jcatC2-
dc.relation.referencesArimatsu, T., Sato, H., Ge, S., Ueno, S., & Iramina, K. (2007). Measurements of BEG Evoked by Transcranial Magnetic Stimulation at Various Stimulus Points on the Head. Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging, 2007. NFSI-ICFBI 2007. Joint Meeting of the 6th International Symposium On, 334–337. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4387768 Chothia, M., Doeltgen, S., & Bradnam, L. V. (2016). Anodal Cerebellar Direct Current Stimulation Reduces Facilitation of Propriospinal Neurons in Healthy Humans. Brain Stimulation, 9(3), 364–371. https://doi.org/10.1016/j.brs.2016.01.002 Galea, J. M., Jayaram, G., Ajagbe, L., & Celnik, P. (2009). Modulation of Cerebellar Excitability by Polarity-Specific Noninvasive Direct Current Stimulation. Journal of Neuroscience, 29(28), 9115–9122. https://doi.org/10.1523/JNEUROSCI.2184-09.2009 Iramina, K., Maeno, T., Kowatari, Y., & Ueno, S. (2002). Effects of transcranial magnetic stimulation on EEG activity. IEEE Transactions on Magnetics, 38(5), 3347–3349. https://doi.org/10.1109/TMAG.2002.802309 Iramina, K., Maeno, T., Nonaka, Y., & Ueno, S. (2003). Measurement of evoked electroencephalography induced by transcranial magnetic stimulation. Journal of Applied Physics, 93(10), 6718. https://doi.org/10.1063/1.1558635 Iramina, K., Maeno, T., & Ueno, S. (2004). Topography of EEG Responses Evoked by Transcranial Magnetic Stimulation to the Cerebellum. IEEE Transactions on Magnetics, 40(4), 2982–2984. https://doi.org/10.1109/TMAG.2004.828988 Iwahashi, M., Koyama, Y., Hyodo, A., Hayami, T., Ueno, S., & Iramina, K. (2009). Measurements of evoked electroencephalograph by transcranial magnetic stimulation applied to motor cortex and posterior parietal cortex. Journal of Applied Physics, 105(7), 07B321. https://doi.org/10.1063/1.3070623 Janssen, A. M., Oostendorp, T. F., & Stegeman, D. F. (2015). The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas. Journal of NeuroEngineering and Rehabilitation, 12(1). https://doi.org/10.1186/s12984-015-0036-2 van Dun, K., Bodranghien, F., Manto, M., & Mariën, P. (2017). Targeting the Cerebellum by Noninvasive Neurostimulation: A Review. The Cerebellum, 16(3), 695–741. https://doi.org/10.1007/s12311-016-0840-7 van Dun, K., & Manto, M. (2018). Non-invasive Cerebellar Stimulation: Moving Towards Clinical Applications for Cerebellar and Extra-Cerebellar Disorders. The Cerebellum, 17(3), 259–263. https://doi.org/10.1007/s12311-017-0908-z van Dun, K., Overwalle, F. V., Manto, M., & Marien, P. (2018). Cognitive Impact of Cerebellar Damage: Is There a Future for Cognitive Rehabilitation? CNS & Neurological Disorders - Drug Targets, 17(3), 199–206. https://doi.org/10.2174/1871527317666180110125043 Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048. https://doi.org/10.1016/j.clinph.2015.11.012-
local.type.refereedNon-Refereed-
local.type.specifiedPresentation-
item.fullcitationVAN DUN, Kim & Manto, Mario (2019) Non-invasive cerebellar stimulation to rearrange disrupted functional networks. In: Neuro2019, Niigata (Japan), 25/7/19-28/7/19.-
item.contributorVAN DUN, Kim-
item.contributorManto, Mario-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
NCNP_def.pdfConference material31.06 MBAdobe PDFView/Open
Show simple item record

Page view(s)

92
checked on Sep 6, 2022

Download(s)

382
checked on Sep 6, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.