Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/30052
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarthel, Nicole-
dc.contributor.authorGEERDENS, Candida-
dc.contributor.authorCzado, Claudia-
dc.contributor.authorJANSSEN, Paul-
dc.date.accessioned2019-12-02T13:53:53Z-
dc.date.available2019-12-02T13:53:53Z-
dc.date.issued2019-
dc.identifier.citationBIOMETRICS, 75(2), p. 439-451-
dc.identifier.urihttp://hdl.handle.net/1942/30052-
dc.description.abstractIn many time-to-event studies, the event of interest is recurrent. Here, the data for each sample unit correspond to a series of gap times between the subsequent events. Given a limited follow-up period, the last gap time might be right-censored. In contrast to classical analysis, gap times and censoring times cannot be assumed independent, i.e., the sequential nature of the data induces dependent censoring. Also, the number of recurrences typically varies among sample units leading to unbalanced data. To model the association pattern between gap times, so far only parametric margins combined with the restrictive class of Archimedean copulas have been considered. Here, taking the specific data features into account, we extend existing work in several directions: we allow for nonparametric margins and consider the flexible class of D-vine copulas. A global and sequential (one- and two-stage) likelihood approach are suggested. We discuss the computational efficiency of each estimation strategy. Extensive simulations show good finite sample performance of the proposed methodology. It is used to analyze the association of recurrent asthma attacks in children. The analysis reveals that a D-vine copula detects relevant insights, on how dependence changes in strength and type over time.-
dc.description.sponsorshipThe authors wish to thank Matthias Killiches for discussion on early drafts of this paper. Also, we thank the Co-Editor, the Associate Editor, and the three reviewers for their valuable comments and good suggestions to further improve the manuscript and its presentation. Numerical calculations were performed on a Linux cluster supported by DFG grant INST 95/919-1 FUGG. This work was supported by the Deutsche Forschungsgemeinschaft [DFG CZ 86/4-1], the Interuniversity Attraction Poles Programme (IAP-network P7/06), Belgian Science Policy Office and the Research Foundation Flanders (FWO), and Scientific Research Community on "Asymptotic Theory for Multidimensional Statistics" [W000817N].-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2019 International Biometric Society-
dc.subject.otherdependence modeling-
dc.subject.otherD-vine copulas-
dc.subject.otherinduced dependent right-censoring-
dc.subject.othermaximum likelihood estima-tion-
dc.subject.otherrecurrent event time data-
dc.subject.otherunbalanced gap time data-
dc.titleDependence modeling for recurrent event times subject to right-censoring with D-vine copulas-
dc.typeJournal Contribution-
dc.identifier.epage451-
dc.identifier.issue2-
dc.identifier.spage439-
dc.identifier.volume75-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notes[Barthel, Nicole; Czado, Claudia] Tech Univ Munich, Dept Math, Boltzmannstr 3, D-85748 Garching, Germany. [Geerdens, Candida; Janssen, Paul] Univ Hasselt, Ctr Stat, BioStat 1, Agoralaan 1, B-3590 Diepenbeek, Belgium.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1111/biom.13014-
dc.identifier.isi000483730600012-
dc.identifier.eissn1541-0420-
item.fulltextWith Fulltext-
item.contributorBarthel, Nicole-
item.contributorGEERDENS, Candida-
item.contributorCzado, Claudia-
item.contributorJANSSEN, Paul-
item.fullcitationBarthel, Nicole; GEERDENS, Candida; Czado, Claudia & JANSSEN, Paul (2019) Dependence modeling for recurrent event times subject to right-censoring with D-vine copulas. In: BIOMETRICS, 75(2), p. 439-451.-
item.accessRightsRestricted Access-
item.validationecoom 2020-
crisitem.journal.issn0006-341X-
crisitem.journal.eissn1541-0420-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
barthel 1.pdf
  Restricted Access
Published version572.94 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.