Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/30071Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | DE MAESSCHALCK, Peter | - |
| dc.contributor.author | KENENS, Karel | - |
| dc.date.accessioned | 2019-12-04T12:31:57Z | - |
| dc.date.available | 2019-12-04T12:31:57Z | - |
| dc.date.issued | 2020 | - |
| dc.date.submitted | 2019-11-29T12:40:07Z | - |
| dc.date.submitted | 2019-11-29T12:40:07Z | - |
| dc.identifier.citation | NONLINEARITY, 33 (1) , p. 341 -387 | - |
| dc.identifier.issn | 0951-7715 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/30071 | - |
| dc.description.abstract | In geometric singular perturbation theory, Fenichel manifolds are typically only finitely smooth. In this paper, we prove better local smoothness properties in the analytic setting, under the condition that no singularities in the slow flow are present. We also investigate cases where the slow flow has a node or focus, where summability results are obtained. Various techniques are being employed like formal power series methods, majorant equations, Gevreyasymptotics, and studies in the Borel plane. | - |
| dc.description.sponsorship | The authors acknowledge support from FWO-NAFOSTED grant G0E6618N. | - |
| dc.language.iso | en | - |
| dc.publisher | IOP PUBLISHING LTD | - |
| dc.rights | 2019 IOP Publishing Ltd & London Mathematical Society Printed in the UK | - |
| dc.subject.other | slow-fast systems | - |
| dc.subject.other | Gevrey asymptotics | - |
| dc.subject.other | Borel summability | - |
| dc.subject.other | singular perturbations | - |
| dc.subject.other | slow manifolds | - |
| dc.subject.other | elliptic manifolds Mathematics Subject Classification numbers: 34E15 | - |
| dc.subject.other | 34M25 | - |
| dc.subject.other | 34M30 | - |
| dc.title | Gevrey asymptotic properties of slow manifolds | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 387 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.spage | 341 | - |
| dc.identifier.volume | 33 | - |
| local.bibliographicCitation.jcat | A1 | - |
| local.publisher.place | TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.source.type | Article | - |
| dc.identifier.doi | 10.1088/1361-6544/ab4d86 | - |
| dc.identifier.isi | WOS:000501195100001 | - |
| dc.identifier.eissn | 1361-6544 | - |
| local.provider.type | CrossRef | - |
| local.uhasselt.uhpub | yes | - |
| local.uhasselt.international | no | - |
| item.contributor | DE MAESSCHALCK, Peter | - |
| item.contributor | KENENS, Karel | - |
| item.accessRights | Restricted Access | - |
| item.fullcitation | DE MAESSCHALCK, Peter & KENENS, Karel (2020) Gevrey asymptotic properties of slow manifolds. In: NONLINEARITY, 33 (1) , p. 341 -387. | - |
| item.fulltext | With Fulltext | - |
| item.validation | ecoom 2021 | - |
| crisitem.journal.issn | 0951-7715 | - |
| crisitem.journal.eissn | 1361-6544 | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| De_Maesschalck_2020_Nonlinearity_33_341.pdf Restricted Access | Published version | 2.8 MB | Adobe PDF | View/Open Request a copy |
SCOPUSTM
Citations
6
checked on Oct 28, 2025
WEB OF SCIENCETM
Citations
6
checked on Oct 26, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.