Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/30117
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEGGHE, Leo-
dc.contributor.authorROUSSEAU, Ronald-
dc.date.accessioned2019-12-10T15:53:01Z-
dc.date.available2019-12-10T15:53:01Z-
dc.date.issued2019-
dc.identifier.citationJOURNAL OF INFORMETRICS, 13(1), p. 291-298-
dc.identifier.urihttp://hdl.handle.net/1942/30117-
dc.description.abstractStarting from the notion of h-type indices for infinite sequences we investigate if these indices satisfy natural inequalities related to the arithmetic, the geometric and the harmonic mean. If f denotes an h-type index, such as the h- or the g-index, then we investigate inequalities such as min(f(X),f(Y)) <= f((X + Y)/2) < max(f(X), f(Y)). We further investigate if: f(min(X,Y)) = min(f(X),f(Y)) and if f(max(X,Y)) = max(f(X),f(Y)). It is shown that the h-index satisfies all the equalities and inequalities we investigate but the g-index does not always, while it is always possible to find a counterexample involving the R-index. This shows that the h-index enjoys a number of interesting mathematical properties as an operator in the partially ordered positive cone (R+)(infinity) of all infinite sequences with non-negative real values. In a second part we consider decreasing vectors X and Y with components at most at distanced. Denoting by D the constant sequence (d,d,d, ...) and by Y-D the vector (max(y(r) - d), 0)(r), we prove that under certain natural conditions, the double inequality h(Y-D) <= h(X) <= h(Y + D) holds. (C) 2019 Elsevier Ltd. All rights reserved.-
dc.description.sponsorshipTheauthorsthankareviewerforpointingoutanerrorinanearlierversionoftheproofofTheorem1-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.rights2019ElsevierLtd.Allrightsreserved.-
dc.subject.otherInequalities-
dc.subject.otherh-index-
dc.subject.otherGeneralized h-index-
dc.subject.otherg-index-
dc.subject.otherR-index-
dc.titleInfinite sequences and their h-type indices-
dc.typeJournal Contribution-
dc.identifier.epage298-
dc.identifier.issue1-
dc.identifier.spage291-
dc.identifier.volume13-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notes[Egghe, Leo] Univ Hasselt, Hasselt, Belgium. [Rousseau, Ronald] Univ Antwerp, Fac Social Sci, B-2020 Antwerp, Belgium. [Rousseau, Ronald] Katholieke Univ Leuven, Fac Onderzoeksctr ECOOM, Naamsestr 61, B-3000 Leuven, Belgium.-
local.publisher.placeAMSTERDAM-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.joi.2019.01.005-
dc.identifier.isi000460550800032-
item.contributorEGGHE, Leo-
item.contributorROUSSEAU, Ronald-
item.fullcitationEGGHE, Leo & ROUSSEAU, Ronald (2019) Infinite sequences and their h-type indices. In: JOURNAL OF INFORMETRICS, 13(1), p. 291-298.-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
item.validationecoom 2020-
crisitem.journal.issn1751-1577-
crisitem.journal.eissn1875-5879-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.