Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/30117
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | EGGHE, Leo | - |
dc.contributor.author | ROUSSEAU, Ronald | - |
dc.date.accessioned | 2019-12-10T15:53:01Z | - |
dc.date.available | 2019-12-10T15:53:01Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | JOURNAL OF INFORMETRICS, 13(1), p. 291-298 | - |
dc.identifier.uri | http://hdl.handle.net/1942/30117 | - |
dc.description.abstract | Starting from the notion of h-type indices for infinite sequences we investigate if these indices satisfy natural inequalities related to the arithmetic, the geometric and the harmonic mean. If f denotes an h-type index, such as the h- or the g-index, then we investigate inequalities such as min(f(X),f(Y)) <= f((X + Y)/2) < max(f(X), f(Y)). We further investigate if: f(min(X,Y)) = min(f(X),f(Y)) and if f(max(X,Y)) = max(f(X),f(Y)). It is shown that the h-index satisfies all the equalities and inequalities we investigate but the g-index does not always, while it is always possible to find a counterexample involving the R-index. This shows that the h-index enjoys a number of interesting mathematical properties as an operator in the partially ordered positive cone (R+)(infinity) of all infinite sequences with non-negative real values. In a second part we consider decreasing vectors X and Y with components at most at distanced. Denoting by D the constant sequence (d,d,d, ...) and by Y-D the vector (max(y(r) - d), 0)(r), we prove that under certain natural conditions, the double inequality h(Y-D) <= h(X) <= h(Y + D) holds. (C) 2019 Elsevier Ltd. All rights reserved. | - |
dc.description.sponsorship | TheauthorsthankareviewerforpointingoutanerrorinanearlierversionoftheproofofTheorem1 | - |
dc.language.iso | en | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.rights | 2019ElsevierLtd.Allrightsreserved. | - |
dc.subject.other | Inequalities | - |
dc.subject.other | h-index | - |
dc.subject.other | Generalized h-index | - |
dc.subject.other | g-index | - |
dc.subject.other | R-index | - |
dc.title | Infinite sequences and their h-type indices | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 298 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 291 | - |
dc.identifier.volume | 13 | - |
local.format.pages | 8 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Egghe, Leo] Univ Hasselt, Hasselt, Belgium. [Rousseau, Ronald] Univ Antwerp, Fac Social Sci, B-2020 Antwerp, Belgium. [Rousseau, Ronald] Katholieke Univ Leuven, Fac Onderzoeksctr ECOOM, Naamsestr 61, B-3000 Leuven, Belgium. | - |
local.publisher.place | AMSTERDAM | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1016/j.joi.2019.01.005 | - |
dc.identifier.isi | 000460550800032 | - |
item.contributor | EGGHE, Leo | - |
item.contributor | ROUSSEAU, Ronald | - |
item.fullcitation | EGGHE, Leo & ROUSSEAU, Ronald (2019) Infinite sequences and their h-type indices. In: JOURNAL OF INFORMETRICS, 13(1), p. 291-298. | - |
item.accessRights | Closed Access | - |
item.fulltext | With Fulltext | - |
item.validation | ecoom 2020 | - |
crisitem.journal.issn | 1751-1577 | - |
crisitem.journal.eissn | 1875-5879 | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.