Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/30427
Title: The Maximal Abelian Dimension of a Lie Algebra, Rentschler's Property and Milovanov's Conjecture
Authors: OOMS, Alfons 
Issue Date: 2020
Publisher: Springer Netherlands
Source: ALGEBRAS AND REPRESENTATION THEORY, 23(3), p. 963-999.
Abstract: A finite dimensional Lie algebra L with magic number c(L) is said to satisfy Rentschler's property if it admits an abelian Lie subalgebra H of dimension at least c(L) − 1. We study the occurrence of this new property in various Lie algebras, such as nonsolvable, solvable, nilpotent, metabelian and filiform Lie algebras. Under some mild condition H gives rise to a complete Poisson commutative subalgebra of the symmetric algebra S(L). Using this, we show that Milovanov's conjecture holds for the filiform Lie algebras of type L n , Q n , R n , W n and also for all filiform Lie algebras of dimension at most eight. For the latter the Poisson center of these Lie algebras is determined.
Keywords: Maximal abelian dimension;· Rentschler’s property;· Complete Poisson commutative subalgebras;· Filiform Lie algebras;· Milovanov’s conjecture
Document URI: http://hdl.handle.net/1942/30427
ISSN: 1386-923X
e-ISSN: 1572-9079
DOI: 10.1007/s10468-019-09877-5
ISI #: WOS:000539035300021
Rights: Springer Nature B.V. 2019
Category: A1
Type: Journal Contribution
Validations: ecoom 2021
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
1802.07951.pdfPeer-reviewed author version267.29 kBAdobe PDFView/Open
Ooms2019_Article_TheMaximalAbelianDimensionOfAL.pdf
  Restricted Access
Published version612.09 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.