Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/30510
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSosa, Richar-
dc.contributor.authorAlfonso, Alejandro-
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorBello, Rafael-
dc.contributor.authorVANHOOF, Koen-
dc.contributor.authorNowé, Ann-
dc.date.accessioned2020-02-14T09:15:04Z-
dc.date.available2020-02-14T09:15:04Z-
dc.date.issued2019-
dc.date.submitted2020-02-10T00:09:43Z-
dc.identifier.citationProceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, p. 1 -8-
dc.identifier.isbn9781728119854-
dc.identifier.issn2161-4393-
dc.identifier.urihttp://hdl.handle.net/1942/30510-
dc.description.abstractIn contrast with the extense variety of machine learning algorithms, to fully automate the reasoning process, only a few can take advantage of the expert knowledge. Fuzzy Cognitive Maps (FCMs) are neural networks that can naturally integrate this kind of knowledge in the inference process. Nevertheless, FCMs have serious drawbacks difficult to overcome from the absence of an intrinsically learning algorithm or limited prediction horizon of the activation space of the neurons. Recently, some variants of the FCMs like Short-Term Cognitive Networks (STCN) and Long Term Cognitive Networks (LTCN) have been proposed to solve this problems. In this paper, we propose a new neural network model as a variant of LTCNs called Long-Term Cognitive Networks with Inputs (LTCNIs). A new kind of input neuron which is not present in the traditional FCMs approach or the derived algorithms STCNs and LTCNs is introduced, in order to model inputs like energy or mass in physical systems. The performance of the method, is discussed through the modeling of a passive circuit problem. As a second contribution, a new flexible reasoning strategy, which preserves the expert knowledge through the synaptic learning is presented. A synaptic learning based on a gradient descent method is implemented limited by a set of restrictions that preserves the model semantics.-
dc.language.isoen-
dc.publisherIEEE-
dc.relation.ispartofseriesIEEE International Joint Conference on Neural Networks (IJCNN)-
dc.rightsCopyright 2020 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.-
dc.subject.otherIndex Terms-Long-term memory-
dc.subject.othercognitive mapping-
dc.subject.othersynaptic learning-
dc.subject.othermodeling and simulation-
dc.titleSynaptic Learning of Long-Term Cognitive Networks with Inputs-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate14-19 July 2019-
local.bibliographicCitation.conferencename2019 International Joint Conference on Neural Networks (IJCNN 2019)-
local.bibliographicCitation.conferenceplaceBudapest, Hungary, Hungary-
dc.identifier.epage8-
dc.identifier.spage1-
local.bibliographicCitation.jcatC1-
local.publisher.place345 E 47TH ST, NEW YORK, NY 10017 USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.source.typeMeeting-
dc.identifier.doi10.1109/IJCNN.2019.8852025-
dc.identifier.isiWOS:000530893802086-
dc.identifier.urlhttps://ieeexplore.ieee.org/xpl/conhome/8840768/proceeding-
local.provider.typePdf-
local.bibliographicCitation.btitleProceedings of the 2019 International Joint Conference on Neural Networks (IJCNN)-
local.uhasselt.uhpubyes-
item.validationecoom 2022-
item.validationvabb 2021-
item.contributorSosa, Richar-
item.contributorAlfonso, Alejandro-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorBello, Rafael-
item.contributorVANHOOF, Koen-
item.contributorNowé, Ann-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.fullcitationSosa, Richar; Alfonso, Alejandro; NAPOLES RUIZ, Gonzalo; Bello, Rafael; VANHOOF, Koen & Nowé, Ann (2019) Synaptic Learning of Long-Term Cognitive Networks with Inputs. In: Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, p. 1 -8.-
crisitem.journal.issn2161-4407-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
conference_041818_1.pdf
  Restricted Access
Published version435.81 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.