Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/30581Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | ANH-KHOA, Vo | - |
| dc.contributor.author | The Hung, Tran | - |
| dc.contributor.author | Lesnic, Daniel | - |
| dc.date.accessioned | 2020-02-24T12:51:25Z | - |
| dc.date.available | 2020-02-24T12:51:25Z | - |
| dc.date.issued | 2021 | - |
| dc.date.submitted | 2020-02-12T13:23:57Z | - |
| dc.identifier.citation | APPLICABLE ANALYSIS, 100 (13), p. 2873-2890 | - |
| dc.identifier.issn | 0003-6811 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/30581 | - |
| dc.description.abstract | This paper is concerned with an age-structured model in population dynamics. We investigate the uniqueness of solution for this type of nonlinear reaction-diffusion problem when the source term depends on the density, indicating the presence of, for example, mortality and reaction processes. Our result shows that in a spatial environment, if two population densities obey the same evolution equation and possess the same terminal data of time and age, then their distributions must coincide therein. | - |
| dc.description.sponsorship | This work is in commemoration of the first death anniversary of V. A. K's father. V. A. K thanks Prof. Nguyen Huy Tuan for introducing him the ultraparabolic problem. The work of V.A.K. was supported by the Research Foundation-Flanders (FWO) under the project 'Approximations for forward and inverse reaction-diffusion problems related to cancer models'. | - |
| dc.language.iso | en | - |
| dc.publisher | TAYLOR & FRANCIS LTD | - |
| dc.subject.other | Backward age-dependent reaction–diffusion | - |
| dc.subject.other | uniqueness | - |
| dc.subject.other | population dynamics | - |
| dc.title | Uniqueness result for an age-dependent reaction-diffusion problem | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 2890 | - |
| dc.identifier.issue | 13 | - |
| dc.identifier.spage | 2873 | - |
| dc.identifier.volume | 100 | - |
| local.format.pages | 18 | - |
| local.bibliographicCitation.jcat | A1 | - |
| dc.description.notes | Lesnic, D (reprint author), Univ Leeds, Dept Appl Math, Leeds, W Yorkshire, England. | - |
| dc.description.notes | amt5ld@maths.leeds.ac.uk | - |
| dc.description.other | Lesnic, D (reprint author), Univ Leeds, Dept Appl Math, Leeds, W Yorkshire, England. amt5ld@maths.leeds.ac.uk | - |
| local.publisher.place | 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.source.type | Article | - |
| dc.identifier.doi | 10.1080/00036811.2019.1698730 | - |
| dc.identifier.isi | WOS:000501036700001 | - |
| dc.contributor.orcid | Vo Anh, Khoa/0000-0003-4233-0895 | - |
| dc.identifier.eissn | 1563-504X | - |
| local.provider.type | wosris | - |
| local.uhasselt.uhpub | yes | - |
| local.uhasselt.international | yes | - |
| item.validation | ecoom 2020 | - |
| item.fulltext | With Fulltext | - |
| item.contributor | ANH-KHOA, Vo | - |
| item.contributor | The Hung, Tran | - |
| item.contributor | Lesnic, Daniel | - |
| item.fullcitation | ANH-KHOA, Vo; The Hung, Tran & Lesnic, Daniel (2021) Uniqueness result for an age-dependent reaction-diffusion problem. In: APPLICABLE ANALYSIS, 100 (13), p. 2873-2890. | - |
| item.accessRights | Open Access | - |
| crisitem.journal.issn | 0003-6811 | - |
| crisitem.journal.eissn | 1563-504X | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| published.pdf Restricted Access | Published version | 1.58 MB | Adobe PDF | View/Open Request a copy |
| journal.pdf | Peer-reviewed author version | 362.51 kB | Adobe PDF | View/Open |
SCOPUSTM
Citations
3
checked on Dec 11, 2025
WEB OF SCIENCETM
Citations
3
checked on Dec 12, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.