Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/30631
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMAST, Bram-
dc.contributor.authorSCHROEYERS, Wouter-
dc.contributor.authorPontikes, Yiannis-
dc.contributor.authorVANDOREN, Bram-
dc.contributor.authorSCHREURS, Sonja-
dc.date.accessioned2020-02-27T13:05:48Z-
dc.date.available2020-02-27T13:05:48Z-
dc.date.issued2020-
dc.date.submitted2020-02-25T12:07:40Z-
dc.identifier.citationKonings, Rudy (Ed.). Reference Module in Materials Science and Materials Engineering, Elsevier, p. 1-20-
dc.identifier.isbn9780128035818-
dc.identifier.urihttp://hdl.handle.net/1942/30631-
dc.description.abstractAlkali Activated Materials (AAMs) are interesting alternative binder materials to Ordinary Portland Cement (OPC) for application in nuclear safety structures and radioactive waste management. AAMs are highly chemical and temperature resistant and can reach a high shielding capacity for gamma irradiation. AAMs also have a low calcium content which enables the addition of fluorine to reduce the H2 production for Mg-containing wastes and limits the formation of 41 Ca due to neutron activation. In general, AAMs have lower radiolytic hydrogen yields compared to OPC. Fayalite slag based AAMs were proven to have a similar gamma shielding capacity to basalt-magnetite concretes. Boron based AAMs form an interesting opportunity for neutron shielding. Since dehydration in AAMs is limited, better neutron shielding capacities for AAMs can be obtained compared to aged concrete. The absence of portlandite, the low water content and the high alkalinity, make AAMs interesting candidates for the conditioning of certain radioactive waste streams. Ions as Cs + and Sr 2+ can be incorporated in the AAM-gel or can be trapped in the self-generated or introduced zeolite structures in the AAM. Also, precipitation of several elements as a hydroxide can be promoted by selecting the right raw material and activation solution.-
dc.language.isoen-
dc.publisherElsevier-
dc.rights2020 Elsevier Inc. All rights reserved. CC-BY-NC-ND-
dc.subject.otherAlkali activated materials-
dc.subject.otherGeopolymers-
dc.subject.otherRadioactive waste conditioning materials-
dc.subject.otherRadiolytic hydrogen gas yield-
dc.subject.otherShielding performance-
dc.subject.otherStability under ionizing radiation-
dc.titleThe Use of Alkali Activated Materials in Nuclear Industry-
dc.typeBook Section-
local.bibliographicCitation.authorsKonings, Rudy-
dc.identifier.epage20-
dc.identifier.spage1-
local.format.pages20-
local.bibliographicCitation.jcatB2-
dc.relation.references1. Provis, J. L. & Van Deventer, J. S. J. Alkali-Activated Materials- State-of-the-Art Report, RILEM TC 224-AAM. 13, (Springer, 2014). 2. Davidovits, J. Geopolymer, Green Chemistry and Sustainable Development Solutions. in Proceedings of the World Congress Geopolymer 2005 (ed. Davidovits, J.) 236 (Institut Géopolymère, 2005). 3. Krivenko, P. Why alkaline activation - 60 years of the theory and practice of alkali-activated materials. J. Ceram. Sci. Technol. 8, 323–333 (2017). 4. Duxson, P. et al. Geopolymer technology : the current state of the art. J Mater Sci 42, 2917–2933 (2007). 5. J. L. Provis and J. S. J. van Deventer, Geopolymers: structure, processing, properties and industrial applications. (Woodhead Publishing Limited, 2009). doi:10.1533/9781845696382.1.37 6. Barbosa, V. F. ., MacKenzie, K. J. . & Thaumaturgo, C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorg. Mater. 2, 309–317 (2000). 7. Davidovits, J. Geopolymers - Inorganic polymeric - new materials. J. Therm. Anal. 37, 1633–1656 (1991). 8. Peys, A. et al. Molecular structure of CaO – FeOx – SiO2 glassy slags and resultant inorganic polymer binders. J. Am. Ceram. Soc. 101, 5846–5857 (2018). 9. Croymans-Plaghki, T. Valorization of Fe-rich industrial by-products in construction materials: a radiological assessment. (UHasselt, 2018). 10. Provis, J. L. & Bernal, S. A. Geopolymers and Related Alkali-Activated Materials. Annu. Rev. Mater. Res. 44, 299–327 (2014). 11. Ukritnukun, S., Sorrell, C. C., Gregg, D., Vance, E. R. & Koshy, P. Potential Use of Ambient-Cured Geopolymers for Intermediate Level Nuclear Waste Storage. MRS Adv. 3, 1123–1131 (2018). 12. Van Jaarsveld, J. G. S., Van Deventer, J. S. J. & Lorenzen, L. Potential use of geopolymeric materials to immobilize toxic metals: Part I. Theory and applications. Miner. Eng. 10, 659–669 (1997). 13. Vance, E. R. & Perera, D. S. Geopolymers for nuclear waste immobilisation. in Geopolymers: Structure, Processing, Properties and Industrial Applications (eds. L. Provis, J. & S.J. van Denveter, J.) 403–422 (Woodhead Publishing, 2009). doi:10.1533/9781845696382.3.401 14. Vance, E. R. & Perera, D. S. Development of geopolymers for nuclear waste immobilisation. in Handbook of Advanced Radioactive Waste Conditioning Technologies 207–229 (Woodhead Publishing Limited, 2011). 15. Chupin, F., Dannoux-papin, A., Ravache, Y. N. & D’Espinose de Lacaillerie, J.-B. Water content and porosity effect on hydrogen radiolytic yields of geopolymers. J. Nucl. Mater. 494, 138–146 (2017). 16. Vandevenne, N. et al. Incorporating Cs and Sr into blast furnace slag inorganic polymers and their effect on matrix properties. J. Nucl. Mater. 503, 1–12 (2018). 17. Shi, C. & Fernández-Jiménez, A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater. 137, 1656–1663 (2006). 18. Duan, P., Yan, C., Zhou, W., Luo, W. & Shen, C. An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin geopolymer after heat and acid exposure. Mater. Des. 74, 125–137 (2015). 19. Provis, J. L. Geopolymers and other alkali activated materials: why, how, and what? Mater. Struct. 47, 11–25 (2014). 20. International Atomic Energy Agency. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste : Results of a Coordinated Research Project. (2013). 21. Drace, Z. & Ojovan, M. I. Cementitious materials for radioactive waste management within IAEA Coordinated Research Project. in Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM 5–13 (IAEA, 2011). doi:10.1115/ICEM2011-59021 22. B. Florence, C. Cau-dit-Coumes, F. Frizon, and S. Lorente, Cement-Based Materials for Nuclear Waste Storage. (Springer, 2013). doi:10.1007/978-1-4614-3445-0 23. Rooses, A. et al. Encapsulation of Mg-Zr alloy in metakaolin-based geopolymer. Appl. Clay Sci. 73, 86–92 (2013). 24. Mobasher, N., Bernal, S. A., Kinoshita, H. & Sharrad, C. A. Gamma irradiation resistance of an early age slag-blended cement matrix for nuclear waste encapsulation. J. Mater. Res. 30, 1563–1571 (2015). 25. Kaplan, M. F. Concrete radiation shielding : nuclear physics, concrete properties, design and construction. (Longman Scientific and Technical, 1989). 26. Machiels, L., Arnout, L., Jones, P. T., Blanpain, B. & Pontikes, Y. Inorganic polymer cement from fe-silicate glasses: Varying the activating solution to glass ratio. Waste and Biomass Valorization 5, 411–428 (2014). 27. Simon, S., Gluth, G. J. G., Banerjee, D. & Pontikes, Y. The fate of iron during the alkali-activation of synthetic ( CaO-) FeO x -SiO2 slags : An Fe K-edge XANES study. J. Am. Ceram. Soc. 101, 2107–2118 (2018). 28. Lemougna, P. N., Mackenzie, K. J. D., Jameson, G. N. L. & Chinje, H. R. U. F. The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash : a 57Fe Mössbauer spectroscopy study. J. Mater. Sci. 48, 5280–5286 (2013). 29. Peys, A. et al. Inorganic Polymers From CaO-FeOx-SiO2 Slag: The Start of Oxidation of Fe and the Formation of a Mixed Valence Binder. Front. Mater. 6, 1–10 (2019). 30. Mohammed, K. S., Azeez, A. B., Bakri, A. M. M. A., Hussin, K. & Azmi, B. R. The Effect of Barite Content on Anti Radiation Properties of Geopolymer Fly Ash Concrete Incorporated Natural Rock Ores of Hematite. J. Sci. Res. 3, 1818–1827 (2012). 31. Shalbi, S. M. et al. Effect of fly ash geopolymer with 15 % barium Sulphate as a design shielding box on radiation attenuation using GafchramicXR-QA2 film dosimetry. J. Eng. 7, 13–17 (2017). 32. Mobasher, N., Bernal, S. A., Kinoshita, H. & Provis, J. L. Gamma irradiation resistance of early age Ba(OH)2Na2SO4-slag cementitious grouts. J. Nucl. Mater. 482, 266–277 (2016). 33. Williams, R. P. & van Riessen, A. Development of alkali activated borosilicate inorganic polymers (AABSIP). J. Eur. Ceram. Soc. 31, 1513–1516 (2011). 34. Montes, C. et al. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Adv. Sp. Res. 56, 1212–1221 (2015). 35. Fillmore, D. L. Literature Review of the Effects of Radiation and Temperature on the Aging of Concrete - Prepared for the Central Research Institute of Electric Power Institute - INEEL/EXT-04-02319. (Idaho National Engineering and Environmental Laboratory, 2004). 36. Rosseel, T. M. et al. Review of the Current State of Knowledge on the Effects of Radiation on Concrete. J. Adv. Concr. Technol. 14, 368–383 (2016). 37. Vodák, F., Vydra, V., Trtík, K. & Kapičková, O. Effect of gamma irradiation on properties of hardened cement paste. Mater. Struct. 44, 101–107 (2010). 38. Bouniol, P. & Bjergbakke, E. A comprehensive model to describe radiolytic processes in cement medium. J. Nucl. Mater. 372, 1–15 (2008). 39. Le Caër, S. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 3, 235–253 (2011). 40. Bjergbakke, E., Sehested, K., Lang Rasmussen, O. & Christensen, H. Input files for computer simulation of water radiolysis. (1984). 41. Vodák, F., Vydra, V., Trtík, K. & Kapičková, O. Effect of gamma irradiation on properties of hardened cement paste. Mater. Struct. 44, 101–107 (2011). 42. Li, W. et al. Effect of vacuum dehydration on gel structure and properties of metakaolin-based geopolymers. Ceram. Int. 43, 14340–14346 (2017). 43. Duxson, P. et al. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surfaces A Physicochem. Eng. Asp. 269, 47–58 (2005). 44. Lambertin, D. et al. Influence of gamma ray irradiation on metakaolin based sodium geopolymer. J. Nucl. Mater. 443, 311–315 (2013). 45. Chupin, F. Caractérisation de l ’effet des irradiations sur les géopolymères. (Université Pierre et Marie Curie, 2015). 46. Cantarel, V., Arisaka, M. & Yamagishi, I. On the hydrogen production of geopolymer wasteforms under irradiation. J. Am. Ceram. Soc. 1–11 (2019). doi:10.1111/jace.16642 47. Bykov, G. L., Gordeev, A. V., Yurik, T. K. & Ershov, B. G. Gas formation upon γ-irradiation of cement material. High Energy Chem. 42, 211–214 (2008). 48. Leay, L., Potts, A. & Donoclift, T. Geopolymers from fly ash and their gamma irradiation. Mater. Lett. 227, 240–242 (2018). 49. Bjergbakke, E., Sehested, K., Lang Rasmussen, O. & Christensen, H. Input files for computer simulation of water radiolysis. (1984). 50. Boher, C., Martin, I., Lorente, S. & Frizon, F. Experimental investigation of gas diffusion through monomodal materials. Application to geopolymers and Vycor® glasses. Microporous Mesoporous Mater. 184, 28–36 (2014). 51. Le Caër, S. et al. Radiolysis of confined water: Hydrogen production at a high dose rate. ChemPhysChem 6, 2585–2596 (2005). 52. Rotureau, P., Renault, J. P., Lebeau, B., Patarin, J. & Mialocq, J. C. Radiolysis of confined water: Molecular hydrogen formation. ChemPhysChem 6, 1316–1323 (2005). 53. Mast, B. et al. The effect of gamma radiation on the mechanical and microstructural properties of Fe-rich inorganic polymers. J. Nucl. Mater. 521, (2019). 54. Mubasher, T. A., Leay, L., Hayes, M. & Butcher, E. Evaluation of Novel Geopolymer-based Materials for Nuclear Waste Treatment. in NUWCEM - 3rd International Symposium on Cement-Based Materials for Nuclear Wastes 1–5 (CEA, 2018). 55. Spinks, J. W. T. & Woods, R. J. An introduction to radiation chemistry. J. Chem. eduction 55, (1978). 56. Deng, N. et al. Effects of gamma-ray irradiation on leaching of simulated 133Cs+ radionuclides from geopolymer wasteforms. J. Nucl. Mater. 459, 270–275 (2015). 57. Piao, F., Oldham, W. G. & Haller, E. E. Mechanism of radiation-induced compaction in vitreous silica. J. Non. Cryst. Solids 276, 61–71 (2000). 58. Sandhu, A. K., Singh, S. & Pandey, O. P. Gamma ray induced modifications of quaternary silicate glasses. J. Phys. D. Appl. Phys. 41, 165402–165408 (2008). 59. Arbel-Haddad, M. et al. The Effect of Gamma Irradiation on the Structure and Binding Properties of Amorphous and Partially- Crystalline Geopolymer Matrices. in NUWCEM -Cement-based Materials for Nuclear Wastes (2018). 60. Craeye, B., De Schutter, G., Vuye, C. & Gerardy, I. Cement-waste interactions: Hardening self-compacting mortar exposed to gamma radiation. Prog. Nucl. Energy 83, 212–219 (2015). 61. Maruyama, I. et al. Impact of gamma-ray irradiation on hardened white Portland cement pastes exposed to atmosphere. Cem. Concr. Res. 108, 59–71 (2018). 62. Mast, B. et al. The effect of gamma radiation on the mechanical and microstructural properties of Fe-rich inorganic polymers. J. Nucl. Mater. 521, 126–136 (2019). 63. Azmi, M., Hamid, A. & Kamil, N. pH-dependent magnetic phase transition of iron oxide nanoparticles synthesized by gamma-radiation reduction method. J. Radioanal Nucl Chem 301, 399–407 (2014). 64. Takeda, H., Hashimoto, S., Matsui, H., Honda, S. & Iwamoto, Y. Rapid fabrication of highly dense geopolymers using a warm press method and their ability to absorb neutron irradiation. Constr. Build. Mater. 50, 82–86 (2014). 65. Bylkin, B. K., Engovatov, I. A., Kozhevnikov, A. N. & Sinyushin, D. K. On the necessity and the role of descriptors of neutron activated structural and shielding materials of nuclear installations for future decommissioning. Nucl. Energy Technol. 4, 257–262 (2018). 66. Bylkin, B. K., Kozhevnikov, A. N., Engovatov, I. A. & Sinyushin, D. K. Radioactivity Category Determination for Radiation-Protection Concrete in Nuclear Facilities Undergoing Decommissioning. At. Energy 121, 383–387 (2017). 67. Evans, J. P. et al. Long-Lived Activation Products in Reactor Materials. (1984). 68. Bai, Y., Collier, N. C., Milestone, N. B. & Yang, C. H. The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. J. Nucl. Mater. 413, 183–192 (2011). 69. Dimas, D. D., Giannopoulou, I. P. & Panias, D. Utilization of Alumina Red Mud for Synthesis of Inorganic Polymeric Materials. Miner. Process. Extr. Metall. Rev. 30, 211–239 (2009). 70. Xu, H. & Van Deventer, J. S. J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59, 247–266 (2000). 71. Khalil, M. Y. & Merz, E. Immobilization of intermediate-level wastes in geopolymers. J. Nucl. Mater. 211, 141–148 (1994). 72. Kuenzel, C. et al. Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin. J. Nucl. Mater. 466, 94–99 (2015). 73. Peng, X., Xu, Y., Xu, Z., Wu, D. & Li, D. Effect of simulated radionuclide strontium on geopolymerization process. procedia Environ. Sci. 31, 325–329 (2016). 74. Xiaodong, S., Sheng, Y., Xuequan, W. & Mingshu, T. Immobilization of Simulated High Level Wastes Into Waste Form. Cem. Concr. Res. 24, 133–138 (1994). 75. Goñi, S., Guerrero, A. & Lorenzo, M. P. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium. J. Hazard. Mater. 137, 1608–1617 (2006). 76. Blackford, M. G., Hanna, J. V., Pike, K. J., Vance, E. R. & Perera, D. S. Transmission Electron Microscopy and Nuclear Magnetic Resonance Studies of Geopolymers for Radioactive Waste Immobilization. J. Am. Ceram. Soc. 90, 1193–1199 (2007). 77. Provis, J. L., Walls, P. . A. & Van Deventer, J. S. J. Geopolymerisation kinetics. 3. Effects of Cs and Sr salts. Chem. Eng. Sci. 63, 4480–4489 (2008). 78. Aly, Z. et al. Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si / Al = 1 . 5 – 4. J. Nucl. Mater. 378, 172–179 (2008). 79. Chlique, C., Lambertin, D., Antonucci, P., Frizon, F. & Deniard, P. XRD Analysis of the Role of Cesium in Sodium-Based Geopolymer. J. Am. Ceram. Soc. 98, 1308–1313 (2015). 80. Shiota, K. et al. Stabilization of cesium in alkali-activated municipal solid waste incineration fly ash and a pyrophyllite-based system. Chemosphere 187, 188–195 (2017). 81. Qian, G., Sun, D. D. & Tay, J. H. New aluminium-rich alkali slag matrix with clay minerals for immobilizing simulated radioactive Sr and Cs waste. J. Nucl. Mater. 299, 199–204 (2001). 82. Brough, A. R. et al. Adiabatically cured , alkali-activated cement-based wasteforms containing high levels of fly ash Formation of zeolites and Al-substituted C-S-H. Cem. Concr. Res. 31, 1437–1447 (2001). 83. Jang, J. G., Park, S. M. & Lee, H. K. Cesium and Strontium Retentions Governed by Aluminosilicate Gel in Alkali-Activated Cements. Materials (Basel). 10, 1–13 (2017). 84. Xu, Z. et al. Immobilization of strontium-loaded zeolite A by metakaolin based- geopolymer. Ceram. Int. 43, 4434–4439 (2017). 85. Guangren, Q., Yuxiang, L., Facheng, Y. & Rongming, S. Improvement of metakaolin on radioactive Sr and Cs immobilization of alkali-activated slag matrix. J. Hazard. Mater. 92, 289–300 (2002). 86. Xuequan, W., Sheng, Y., Xiadong, S. & Mingshu, T. Alkali-activated slag cement based radioactive waste forms. Cem. Concr. Res. 21, 16–20 (1991). 87. Jang, J. G., Park, S. M. & Lee, H. K. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. J. Hazard. Mater. 318, 339–346 (2016). 88. Sora, I. N., R. Pelosato, Botta, D. & G. Dotelli. Chemistry and microstructure of cement pastes admixed with organic liquids. J. Eur. Ceram. Soc. 22, 1463–1473 (2002). 89. Pollard, S. J. T., Montgomery, D. M., Sollars, C. J. & Perry, R. Organic compounds in the cement-based stabilisation/ solidification of hazardous mixed wastes-Mechanistic and process considerations. J. Hazard. Mater. 28, 313–327 (1991). 90. International Atomic Energy Agency. Treatment and conditioning of radioactive organic liquids. (1992). 91. Cantarel, V. et al. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer. J. Nucl. Mater. 464, 16–19 (2015). 92. Lambertin, D., Rooses, A. & Frizon, F. Process for preparing a composite material from an organic liquid and resulting material -AU 2013320269 B2. (2017). 93. Cantarel, V. Etude de la synthèse de composites liquides organiques/geopolymère en vue du conditionnement de déchets nucléaires. (Université Blaise Pascal, 2016). 94. Cantarel, V. et al. Geopolymer assembly by emulsion templating : Emulsion stability and hardening mechanisms. Ceram. Int. 44, 10558–10568 (2018). 95. Davy, C. A., Hauss, G., Planel, B. & Lambertin, D. 3D structure of oil droplets in hardened geopolymer emulsions. J. Am. Ceram. Soc. 102, 949–954 (2018). 96. Wang, J. et al. Preparation of Alkali-Activated Slag-Fly Ash-Metakaolin Hydroceramics for Immobilizing Simulated Sodium-Bearing Waste. Am. Ceram. Soc. 98, 1393–1399 (2015). 97. Li, Z., Ohnuki, T. & Ikeda, K. Development of paper sludge ash-based geopolymer and application to treatment of hazardous water contaminated with radioisotopes. Materials (Basel). 9, (2016). 98. Gallagher, S. A. & McCarthy, G. J. Preparation and X-ray characterization of pollucite (CsAlSi2O6). J. Inorg. Nucl. Chem. 43, 1773–1777 (1981). 99. Arbel Haddad, M. et al. Formation of zeolites in metakaolin-based geopolymers and their potential application for Cs immobilization. J. Nucl. Mater. 493, 168–179 (2017). 100. Liu, Q., Xu, H. & Navrotsky, A. Nitrate cancrinite: Synthesis, characterization, and determination of the enthalpy of formation. Microporous Mesoporous Mater. 87, 146–152 (2005). 101. Ofer-Rozovsky, E. et al. Cesium immobilization in nitrate-bearing metakaolin-based geopolymers. J. Nucl. Mater. 514, 247–254 (2019). 102. Arbel-Haddad, M. et al. Low-Silica Geopolymers As Candidate Matrices for Immobilization of Cesium Ions. in NUWCEM - 3rd International Symposium on Cement-Based Materials for Nuclear Wastes (2018). 103. Norby, P., Andersen, I. G. K., Andersen, E. K., Colella, C. & de’Gennaro, M. Synthesis and structure of lithium cesium and lithium thallium cancrinites. Zeolites 11, 248–253 (1991). 104. Zhao, H., Deng, Y., Harsh, J. B., Flury, M. & Boyle, J. S. Alteration of kaolinite to Cancrinite and sodalite by simulated Hanford tank waste and its impact on cesium retention. Clays Clay Miner. 52, 1–13 (2004). 105. Mon, J., Deng, Y., Flury, M. & Harsh, J. B. Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophane. Microporous Mesoporous Mater. 86, 277–286 (2005). 106. Ofer-rozovsky, E., Arbel Haddad, M., Bar Nes, G. & Katz, A. The formation of crystalline phases in metakaolin-based geopolymers in the presence of sodium nitrate. J. Mater. Sci. 51, 4795–4814 (2016). 107. Berger, S., Frizon, F. & Joussot-Dubien, C. Formulation of caesium based and caesium containing geopolymers. Adv. Appl. Ceram. 108, 412–417 (2009). 108. Gollop, R. S. & Taylor, H. F. W. Microstructural and microanalytical studies of sulfate attack. IV. Reactions of a slag cement paste with sodium and magne- sium sulfate solutions. Cem. Concr. Compos. 26, 1029–1044 (1996). 109. Asano, T., Kawasaki, T. & Higuchi, N. Feasibility Study of Solidification for Low-Level Liquid Waste Generated by Sulfuric Acid Elution Treatment of Spent Ion Exchange Resin. J. Power Energy Syst. 2, 206–214 (2008). 110. Mobasher, N., Kinoshita, H., Bernal, S. A. & Sharrard, C. A. Ba(OH)2 – blast furnace slag composite binders for encapsulation of sulphate bearing nuclear waste. Adv. Appl. Ceram. 113, 460–465 (2014). 111. Cappelletti, P. et al. Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites. J. Nucl. Mater. 414, 451–457 (2011). 112. Ke, X., Bernal, S. A., Sato, T. & Provis, J. L. Encapsulation of strontium loaded ion-exchangers using metakaolin geopolymer : the influence of activator cations. in NUWCEM - 3rd International Symposium on Cement-Based Materials for Nuclear Wastes (2018). 113. Mimura, H. & Akiba, K. Adsorption behavior of cesium and strontium on synthetic zeolite P. J. Nucl. Sci. Technol. 30, 436–443 (1993). 114. Elakneswaran, Y. et al. Interaction of strontium ions with metakaolin-based geopolymers. in NUWCEM - 3rd International Symposium on Cement-Based Materials for Nuclear Wastes (2018). 115. Bakharev, T. Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 35, 658–670 (2005). 116. Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Mohd Tahir, M. & Aziah, N. Sulfuric acid resistance of blended ash geopolymer concrete. Constr. Build. Mater. 43, 80–86 (2013). 117. Kuenzel, C. et al. Encapsulation of aluminium in geopolymers produced from metakaolin. J. Nucl. Mater. 447, 208–214 (2014). 118. Rifai, F., Chartier, D., Stefan, L., Muzeau, B. & Darquennes, A. NUGG Waste Retrieval – development of an alkali-activated grout for graphite wastes mixed to reactive metals impurities. in NUWCEM - 3rd International Symposium on Cement-Based Materials for Nuclear Wastes 12 (2018). 119. Cannes, C. et al. Reactivity of Mg-Zr in Na-geopolymers , role of fluoride ions. in Cement-based Materials for Nuclear Wastes (2018). 120. Song, G. Recent progress in corrosion and protection of magnesium alloys. Adv. Eng. Mater. 7, 563–586 (2005). 121. Chartier, D., Muzeau, B., Stefan, L., Sanchez-canet, J. & Monguillon, C. Magnesium alloys and graphite wastes encapsulated in cementitious materials : Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag. J. Hazard. Mater. 326, 197–210 (2017). 122. Rooses, A., Lambertin, D., Chartier, D. & Frizon, F. Galvanic corrosion of Mg-Zr fuel cladding and steel immobilized in Portland cement and geopolymer at early ages. J. Nucl. Mater. 435, 137–140 (2013). 123. Lambertin, D., Frizon, F. & Bart, F. Mg-Zr alloy behavior in basic solutions and immobilization in Portland cement and Na-geopolymer with sodium fluoride inhibitor. Surf. Coatings Technol. 206, 4567–4573 (2012). 124. Barros, C. F., Muzeau, B., François, R. & Hostis, V. L’. Corrosion behavior of Mg-Zr alloy in alkaline solutions and in Na-geopolymer. in NUWCEM - 3rd International Symposium on Cement-Based Materials for Nuclear Wastes (2018). 125. LAMBERTIN, D., FRIZON, F., BLACHERE, A. & BART, F. Use of anticorrosion agents for conditioning magnesium metal, conditioning material thus obtained and preparation process. (2016). doi:10.1179/174367606X120142 126. Lambertin, D., Goettmann, F., Frizon, F. & Blachere, A. Process for dissolving a metal and implementation for conditioning said metal in a geopolymer FR3033444A1. (2016). 127. Lichvar, P., Rozloznik, M. & Sekely, S. Behaviour of Aluminosilicate Inorganic Matrix SIAL During and After Solidification of Radioactive Sludge and Radioactive Spent Resins and Their Mixtures. Amec Nuclear Slovakia (2013). 128. Majersky, D., Sekely, S., Zavodska, D. & Breza, M. Application of Inorganic SIAL Matrix and Movable Technology in Solidification of the TRU Sludges and Sludge / Resin Mixtures. in WM’06 Conference (2006).-
local.type.refereedRefereed-
local.type.specifiedBook Section-
dc.identifier.doi10.1016/B978-0-12-803581-8.11629-7-
local.provider.typeCrossRef-
local.bibliographicCitation.btitleReference Module in Materials Science and Materials Engineering-
local.uhasselt.uhpubyes-
local.uhasselt.internationalno-
item.validationvabb 2023-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationMAST, Bram; SCHROEYERS, Wouter; Pontikes, Yiannis; VANDOREN, Bram & SCHREURS, Sonja (2020) The Use of Alkali Activated Materials in Nuclear Industry. In: Konings, Rudy (Ed.). Reference Module in Materials Science and Materials Engineering, Elsevier, p. 1-20.-
item.contributorMAST, Bram-
item.contributorSCHROEYERS, Wouter-
item.contributorPontikes, Yiannis-
item.contributorVANDOREN, Bram-
item.contributorSCHREURS, Sonja-
Appears in Collections:Research publications
Show simple item record

Page view(s)

120
checked on Aug 8, 2022

Download(s)

216
checked on Aug 8, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.