Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3072
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWAUTERS, Paul-
dc.date.accessioned2007-11-23T15:06:28Z-
dc.date.available2007-11-23T15:06:28Z-
dc.date.issued1999-
dc.identifier.citationPROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 42. p. 95-111-
dc.identifier.issn0013-0915-
dc.identifier.urihttp://hdl.handle.net/1942/3072-
dc.description.abstractWe study the semicentre of a group algebra K[G] where K is a field of characteristic zero and G is a polycyclic-by-finite group such that Delta(G) is torsion-free abelian. Several properties about the structure of this ring are proved, in particular as to when is the semicentre a UFD. Examples are constructed when this is not the case. We also prove necessary and sufficient conditions for every normal element of K[G] which belongs to K[Delta(G)] to be the product of a unit and a semi-invariant.-
dc.language.isoen-
dc.publisherOXFORD UNIV PRESS-
dc.titleThe semicentre of a group algebra-
dc.typeJournal Contribution-
dc.identifier.epage111-
dc.identifier.spage95-
dc.identifier.volume42-
local.format.pages17-
dc.description.notesLimburgs Univ Centrum, Dept Math, Diepenbeek, Belgium.Wauters, P, Limburgs Univ Centrum, Dept Math, Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000078418400008-
item.accessRightsClosed Access-
item.contributorWAUTERS, Paul-
item.validationecoom 2000-
item.fullcitationWAUTERS, Paul (1999) The semicentre of a group algebra. In: PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 42. p. 95-111.-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.