Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/3083
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SEVENHANT, Bert | - |
dc.contributor.author | VAN DEN BERGH, Michel | - |
dc.date.accessioned | 2007-11-23T15:19:46Z | - |
dc.date.available | 2007-11-23T15:19:46Z | - |
dc.date.issued | 1999 | - |
dc.identifier.citation | JOURNAL OF ALGEBRA, 221(1). p. 29-49 | - |
dc.identifier.issn | 0021-8693 | - |
dc.identifier.uri | http://hdl.handle.net/1942/3083 | - |
dc.description.abstract | A conjecture of Kac states that the constant coefficient of the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field is equal to the multiplicity of the corresponding root in the associated Kac-Moody Lie algebra. In this paper we give a combinatorial reformulation of Kac's conjecture in terms of a property of q-multinomial coefficients. As a side result we give a formula for certain inverse Kostka-Foulkes polynomials. (C) 1999 Academic Press. | - |
dc.language.iso | en | - |
dc.publisher | ACADEMIC PRESS INC | - |
dc.subject.other | Hall algebra; symmetric functions | - |
dc.title | On the number of absolutely indecomposable representations of a quiver | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 49 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 29 | - |
dc.identifier.volume | 221 | - |
local.format.pages | 21 | - |
dc.description.notes | Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Sevenhant, B, Limburgs Univ Ctr, Dept WNI, Univ Campus,Bldg D, B-3590 Diepenbeek, Belgium. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1006/jabr.1999.7937 | - |
dc.identifier.isi | 000083682100002 | - |
item.fulltext | No Fulltext | - |
item.contributor | SEVENHANT, Bert | - |
item.contributor | VAN DEN BERGH, Michel | - |
item.fullcitation | SEVENHANT, Bert & VAN DEN BERGH, Michel (1999) On the number of absolutely indecomposable representations of a quiver. In: JOURNAL OF ALGEBRA, 221(1). p. 29-49. | - |
item.accessRights | Closed Access | - |
item.validation | ecoom 2000 | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.