Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3083
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSEVENHANT, Bert-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-23T15:19:46Z-
dc.date.available2007-11-23T15:19:46Z-
dc.date.issued1999-
dc.identifier.citationJOURNAL OF ALGEBRA, 221(1). p. 29-49-
dc.identifier.issn0021-8693-
dc.identifier.urihttp://hdl.handle.net/1942/3083-
dc.description.abstractA conjecture of Kac states that the constant coefficient of the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field is equal to the multiplicity of the corresponding root in the associated Kac-Moody Lie algebra. In this paper we give a combinatorial reformulation of Kac's conjecture in terms of a property of q-multinomial coefficients. As a side result we give a formula for certain inverse Kostka-Foulkes polynomials. (C) 1999 Academic Press.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC-
dc.subject.otherHall algebra; symmetric functions-
dc.titleOn the number of absolutely indecomposable representations of a quiver-
dc.typeJournal Contribution-
dc.identifier.epage49-
dc.identifier.issue1-
dc.identifier.spage29-
dc.identifier.volume221-
local.format.pages21-
dc.description.notesLimburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Sevenhant, B, Limburgs Univ Ctr, Dept WNI, Univ Campus,Bldg D, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1006/jabr.1999.7937-
dc.identifier.isi000083682100002-
item.fulltextNo Fulltext-
item.contributorSEVENHANT, Bert-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationSEVENHANT, Bert & VAN DEN BERGH, Michel (1999) On the number of absolutely indecomposable representations of a quiver. In: JOURNAL OF ALGEBRA, 221(1). p. 29-49.-
item.accessRightsClosed Access-
item.validationecoom 2000-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.