Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/30844Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Majid, Shahn | - |
| dc.contributor.author | TAO, Wenqing | - |
| dc.date.accessioned | 2020-03-19T11:39:42Z | - |
| dc.date.available | 2020-03-19T11:39:42Z | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2020-02-05T13:35:55Z | - |
| dc.identifier.citation | JOURNAL OF NONCOMMUTATIVE GEOMETRY, 13 (3) , p. 1055 -1116 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/30844 | - |
| dc.description.abstract | We explore the differential geometry of finite sets where the differential structure is given by a quiver rather than as more usual by a graph. In the finite group case we show that the data for such a differential calculus is described by certain Hopf quiver data as familiar in the context of path algebras. We explore a duality between geometry on the function algebra vs geometry on the group algebra, i.e. on the dual Hopf algebra, illustrated by the noncommutative Riemannian geometry of the group algebra of S-3. We show how quiver geometries arise naturally in the context of quantum principal bundles. We provide a formulation of bimodule Riemannian geometry for quantum metrics on a quiver, with a fully worked example on 2 points; in the quiver case, metric data assigns matrices not real numbers to the edges of a graph. The paper builds on the general theory in our previous work [19]. | - |
| dc.description.sponsorship | The second author was funded by 2016YXMS006 and NSFC11601167. | - |
| dc.language.iso | en | - |
| dc.publisher | EUROPEAN MATHEMATICAL SOC | - |
| dc.subject.other | Hopf algebra | - |
| dc.subject.other | nonsurjective calculus | - |
| dc.subject.other | quiver | - |
| dc.subject.other | duality | - |
| dc.subject.other | finite group | - |
| dc.subject.other | bimodule connection | - |
| dc.title | Generalised noncommutative geometry on finite groups and Hopf quivers | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 1116 | - |
| dc.identifier.issue | 3 | - |
| dc.identifier.spage | 1055 | - |
| dc.identifier.volume | 13 | - |
| local.format.pages | 62 | - |
| local.bibliographicCitation.jcat | A1 | - |
| dc.description.notes | Majid, S (reprint author), Queen Mary Univ London, Sch Math Sci, London E1 4NS, England. | - |
| dc.description.notes | s.majid@qmul.ac.uk; wqtao@hust.edu.cn | - |
| dc.description.other | Majid, S (reprint author), ueen Mary Univ London, Sch Math Sci, London E1 4NS, England. s.majid@qmul.ac.uk; wqtao@hust.edu.cn | - |
| local.publisher.place | PUBLISHING HOUSE, E T H-ZENTRUM SEW A27, SCHEUCHZERSTRASSE 70, CH-8092 | - |
| local.publisher.place | ZURICH, SWITZERLAND | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.identifier.doi | 10.4171/JNCG/345 | - |
| dc.identifier.isi | WOS:000495023200007 | - |
| dc.identifier.eissn | 1661-6960 | - |
| local.provider.type | wosris | - |
| local.uhasselt.uhpub | yes | - |
| item.validation | ecoom 2020 | - |
| item.fullcitation | Majid, Shahn & TAO, Wenqing (2019) Generalised noncommutative geometry on finite groups and Hopf quivers. In: JOURNAL OF NONCOMMUTATIVE GEOMETRY, 13 (3) , p. 1055 -1116. | - |
| item.fulltext | No Fulltext | - |
| item.contributor | Majid, Shahn | - |
| item.contributor | TAO, Wenqing | - |
| item.accessRights | Closed Access | - |
| crisitem.journal.issn | 1661-6952 | - |
| crisitem.journal.eissn | 1661-6960 | - |
| Appears in Collections: | Research publications | |
SCOPUSTM
Citations
5
checked on Feb 20, 2026
WEB OF SCIENCETM
Citations
4
checked on Feb 18, 2026
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.