Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/30844
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMajid, Shahn-
dc.contributor.authorTAO, Wenqing-
dc.date.accessioned2020-03-19T11:39:42Z-
dc.date.available2020-03-19T11:39:42Z-
dc.date.issued2019-
dc.date.submitted2020-02-05T13:35:55Z-
dc.identifier.citationJOURNAL OF NONCOMMUTATIVE GEOMETRY, 13 (3) , p. 1055 -1116-
dc.identifier.urihttp://hdl.handle.net/1942/30844-
dc.description.abstractWe explore the differential geometry of finite sets where the differential structure is given by a quiver rather than as more usual by a graph. In the finite group case we show that the data for such a differential calculus is described by certain Hopf quiver data as familiar in the context of path algebras. We explore a duality between geometry on the function algebra vs geometry on the group algebra, i.e. on the dual Hopf algebra, illustrated by the noncommutative Riemannian geometry of the group algebra of S-3. We show how quiver geometries arise naturally in the context of quantum principal bundles. We provide a formulation of bimodule Riemannian geometry for quantum metrics on a quiver, with a fully worked example on 2 points; in the quiver case, metric data assigns matrices not real numbers to the edges of a graph. The paper builds on the general theory in our previous work [19].-
dc.description.sponsorshipThe second author was funded by 2016YXMS006 and NSFC11601167.-
dc.language.isoen-
dc.publisherEUROPEAN MATHEMATICAL SOC-
dc.subject.otherHopf algebra-
dc.subject.othernonsurjective calculus-
dc.subject.otherquiver-
dc.subject.otherduality-
dc.subject.otherfinite group-
dc.subject.otherbimodule connection-
dc.titleGeneralised noncommutative geometry on finite groups and Hopf quivers-
dc.typeJournal Contribution-
dc.identifier.epage1116-
dc.identifier.issue3-
dc.identifier.spage1055-
dc.identifier.volume13-
local.format.pages62-
local.bibliographicCitation.jcatA1-
dc.description.notesMajid, S (reprint author), Queen Mary Univ London, Sch Math Sci, London E1 4NS, England.-
dc.description.notess.majid@qmul.ac.uk; wqtao@hust.edu.cn-
dc.description.otherMajid, S (reprint author), ueen Mary Univ London, Sch Math Sci, London E1 4NS, England. s.majid@qmul.ac.uk; wqtao@hust.edu.cn-
local.publisher.placePUBLISHING HOUSE, E T H-ZENTRUM SEW A27, SCHEUCHZERSTRASSE 70, CH-8092-
local.publisher.placeZURICH, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.4171/JNCG/345-
dc.identifier.isiWOS:000495023200007-
dc.identifier.eissn1661-6960-
local.provider.typewosris-
local.uhasselt.uhpubyes-
item.validationecoom 2020-
item.fullcitationMajid, Shahn & TAO, Wenqing (2019) Generalised noncommutative geometry on finite groups and Hopf quivers. In: JOURNAL OF NONCOMMUTATIVE GEOMETRY, 13 (3) , p. 1055 -1116.-
item.fulltextNo Fulltext-
item.contributorMajid, Shahn-
item.contributorTAO, Wenqing-
item.accessRightsClosed Access-
crisitem.journal.issn1661-6952-
crisitem.journal.eissn1661-6960-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

5
checked on Feb 20, 2026

WEB OF SCIENCETM
Citations

4
checked on Feb 18, 2026

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.