Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/31252
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKHORSHID, Mehran-
dc.contributor.authorLOSADA-PEREZ, Patricia-
dc.contributor.authorCornelis, Peter-
dc.contributor.authorDollt, Michele-
dc.contributor.authorIngebrandt, Sven-
dc.contributor.authorGlorieux, Christ-
dc.contributor.authorRENNER, Frank-
dc.contributor.authorVAN GRINSVEN, Bart-
dc.contributor.authorDE CEUNINCK, Ward-
dc.contributor.authorTHOELEN, Ronald-
dc.contributor.authorWAGNER, Patrick-
dc.date.accessioned2020-05-29T14:33:08Z-
dc.date.available2020-05-29T14:33:08Z-
dc.date.issued2020-
dc.date.submitted2020-04-13T12:10:59Z-
dc.identifier.citationSENSORS AND ACTUATORS B-CHEMICAL, 310 (Art N° 127627)-
dc.identifier.urihttp://hdl.handle.net/1942/31252-
dc.description.abstractThe heat-transfer method HTM is a bioanalytical technique in which a temperature gradient is established between the backside of a functionalized chip and the supernatant liquid. By combining the measured temperature difference with the power used to generate this gradient, one obtains the thermal resistance R-th. This parameter responds sensitively and in a concentration-dependent way to the binding of bioparticles to receptors as well as to phase transitions in coatings on the chip. The size of particles that can be detected with HTM spans from lowmolecular weight molecules over proteins and DNA fragments up to cells with diameters at the micron scale. In this work, we explore the question whether and why small ligands adsorption can result still in quantifiable R-th changes and whether there is a common origin of the generally observed R-th increase upon binding a wide variety of cells and biomolecules. The data obtained on thiols with different capping groups suggest that the correspondence of molecular vibration frequencies of the ligands and the liquid is decisive for an efficient or impeded heat transfer and hence for the macroscopically determined R-th parameter.-
dc.description.sponsorshipThis work was supported by the Research Foundation Flanders FWO (projects G.0B62.13 N and G.0791.16 N) and the Special Research Funds BOF (Hasselt University) and FLOF (KU Leuven). Assistance on AFM imaging by B. Pittenger and P. Markus (both from Bruker) and technical support by P. Robaeys, L. De Winter, and H. Penxten (in Hasselt University) and W. Neefs (in KU Leuven) is kindly appreciated. D. Vloemans and Prof. J. Lammertyn from KU Leuven provided the phase-change material. Finally, we thank Profs. M. Wubbenhorst (KU Leuven) and J. Hooyberghs (Hasselt University) for stimulating discussions and proofreading the manuscript.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.rights2019 Elsevier B.V. All rights reserv-
dc.subject.otherHeat-transfer method (HTM)-
dc.subject.otherSelf-assembling thiol monolayers-
dc.subject.otherQuartz-crystal microbalance with dissipation monitoring (QCM-D)-
dc.subject.otherThermal resistance at interfaces-
dc.titleSearching for a common origin of heat-transfer effects in bio- and chemosensors: A study on thiols as a model system-
dc.typeJournal Contribution-
dc.identifier.volume310-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notesLosada-Perez, P (reprint author), ULB, Expt Soft Matter & Thermal Phys Grp EST, Campus La Plaine,CP223,Blvd Triomphe, B-1050 Brussels, Belgium.; Khorshid, M (reprint author), Katholieke Univ Leuven, Lab Soft Matter & Biophys, Celestijnenlaan 200 D, B-3001 Leuven, Belgium.-
dc.description.notesmehran.khorshid@kuleuven.be; plosadap@ulb.ac.be-
dc.description.otherLosada-Perez, P (reprint author), ULB, Expt Soft Matter & Thermal Phys Grp EST, Campus La Plaine,CP223,Blvd Triomphe, B-1050 Brussels, Belgium. mehran.khorshid@kuleuven.be; plosadap@ulb.ac.be-
local.publisher.placePO BOX 564, 1001 LAUSANNE, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr127627-
dc.source.typeArticle-
dc.identifier.doi10.1016/j.snb.2019.127627-
dc.identifier.isiWOS:000519306300048-
dc.contributor.orcidCornelis, Peter/0000-0002-7218-0851; Wagner,-
dc.contributor.orcidPatrick/0000-0002-4028-3629; Ingebrandt, Sven/0000-0002-0405-2727-
dc.identifier.eissn0925-4005-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.contributorKHORSHID, Mehran-
item.contributorLOSADA-PEREZ, Patricia-
item.contributorCornelis, Peter-
item.contributorDollt, Michele-
item.contributorIngebrandt, Sven-
item.contributorGlorieux, Christ-
item.contributorRENNER, Frank-
item.contributorVAN GRINSVEN, Bart-
item.contributorDE CEUNINCK, Ward-
item.contributorTHOELEN, Ronald-
item.contributorWAGNER, Patrick-
item.fulltextWith Fulltext-
item.validationecoom 2021-
item.fullcitationKHORSHID, Mehran; LOSADA-PEREZ, Patricia; Cornelis, Peter; Dollt, Michele; Ingebrandt, Sven; Glorieux, Christ; RENNER, Frank; VAN GRINSVEN, Bart; DE CEUNINCK, Ward; THOELEN, Ronald & WAGNER, Patrick (2020) Searching for a common origin of heat-transfer effects in bio- and chemosensors: A study on thiols as a model system. In: SENSORS AND ACTUATORS B-CHEMICAL, 310 (Art N° 127627).-
item.accessRightsRestricted Access-
crisitem.journal.eissn0925-4005-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
mehran.pdf
  Restricted Access
Published version2.39 MBAdobe PDFView/Open    Request a copy
Show simple item record

WEB OF SCIENCETM
Citations

6
checked on May 2, 2024

Page view(s)

74
checked on Sep 7, 2022

Download(s)

10
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.