Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/31254
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGumiel, Carlos-
dc.contributor.authorJardiel, Teresa-
dc.contributor.authorCalatayud, David G.-
dc.contributor.authorVRANKEN, Thomas-
dc.contributor.authorVAN BAEL, Marlies-
dc.contributor.authorHARDY, An-
dc.contributor.authorLourdes Calzada, Maria-
dc.contributor.authorJimenez, Ricardo-
dc.contributor.authorGarcia-Hernandez, Mar-
dc.contributor.authorMompean, Federico J.-
dc.contributor.authorCaballero, Amador C.-
dc.contributor.authorPeiteado, Marco-
dc.date.accessioned2020-06-02T12:17:33Z-
dc.date.available2020-06-02T12:17:33Z-
dc.date.issued2020-
dc.date.submitted2020-06-02T12:04:46Z-
dc.identifier.citationJOURNAL OF MATERIALS CHEMISTRY C, 8 (12) , p. 4234 -4245-
dc.identifier.urihttp://hdl.handle.net/1942/31254-
dc.description.abstractThe metastability impediment which usually prevents the obtaining of a phase-pure BiFeO3 material can be dramatically stressed when taking the system to the thin film configuration. In order to preserve the stoichiometry, the films need to be processed at low temperatures and hence the solid-state diffusion processes which usually govern the microstructural evolution in bulk cannot be expected to also rule the development of the functional films. All these circumstances were presumed when exploring the possibilities of an aqueous solution-gel process plus spin-coating deposition method to reproduce, in thin film dimensions, the excellent multiferroic properties that have been previously observed with an optimized rare-earth and Ti4+-codoped BiFeO3 bulk composition. The experiments indicate high reliability for the tested methodology, allowing for the obtaining of homogeneous dense films at temperatures as low as 600 degrees C and with a tunable multiferroic response depending on the formulated rare-earth (Sm or Nd). Thorough structural characterization of the films reveals that despite the low temperature processing restrictions, effective microstructural control is achieved at the nanoscale, which is attributed to effective retention (pinning) of the dopants inside the perovskite structure of BiFeO3.-
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) under projects MAT2016-80182-R, MAT2017-87134-c2-2-R and partially by the project MAT2016-76851-R. It was also supported by the Research Foundation Flanders (FWO-Vlaanderen), project number G039414N. Dr T. Jardiel acknowledges the European Science Foundation (ESF) and the Ramon y Cajal Program of MICINN for the financial support. Work by Dr Calatayud was also supported by Fundacion General CSIC (COMFUTURO Program). We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.rightsThis article is Open Access. Creative Commons BY license-
dc.subject.otherDOPED BIFEO3-
dc.subject.otherELECTRICAL-PROPERTIES-
dc.subject.otherPHASE-TRANSITION-
dc.subject.otherND-
dc.subject.otherMICROSTRUCTURE-
dc.subject.otherSUBSTRATE-
dc.subject.otherTHICKNESS-
dc.subject.otherCERAMICS-
dc.subject.otherSM-
dc.titleNanostructure stabilization by low-temperature dopant pinning in multiferroic BiFeO3-based thin films produced by aqueous chemical solution deposition-
dc.typeJournal Contribution-
dc.identifier.epage4245-
dc.identifier.issue12-
dc.identifier.spage4234-
dc.identifier.volume8-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesJardiel, T (reprint author), Inst Ceram & Vidrio CSIC, Dept Electroceram, Madrid, Spain.-
dc.description.notesjardiel@icv.csic.es-
dc.description.otherJardiel, T (reprint author), Inst Ceram & Vidrio CSIC, Dept Electroceram, Madrid, Spain. jardiel@icv.csic.es-
local.publisher.placeTHOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1039/c9tc05912a-
dc.identifier.isiWOS:000526888700029-
dc.contributor.orcidGarcia-Hernandez, Mar/0000-0002-5987-0647; Van Bael,-
dc.contributor.orcidMarlies/0000-0002-5516-7962; CALZADA, M. LOURDES/0000-0002-2286-653X;-
dc.contributor.orcidCalatayud, David G./0000-0003-2633-2989; Mompean, Federico-
dc.contributor.orcidJ./0000-0002-6346-1475-
dc.identifier.eissn2050-7534-
local.provider.typewosris-
local.uhasselt.uhpubyes-
item.contributorGumiel, Carlos-
item.contributorJardiel, Teresa-
item.contributorCalatayud, David G.-
item.contributorVRANKEN, Thomas-
item.contributorVAN BAEL, Marlies-
item.contributorHARDY, An-
item.contributorLourdes Calzada, Maria-
item.contributorJimenez, Ricardo-
item.contributorGarcia-Hernandez, Mar-
item.contributorMompean, Federico J.-
item.contributorCaballero, Amador C.-
item.contributorPeiteado, Marco-
item.fulltextWith Fulltext-
item.validationecoom 2021-
item.fullcitationGumiel, Carlos; Jardiel, Teresa; Calatayud, David G.; VRANKEN, Thomas; VAN BAEL, Marlies; HARDY, An; Lourdes Calzada, Maria; Jimenez, Ricardo; Garcia-Hernandez, Mar; Mompean, Federico J.; Caballero, Amador C. & Peiteado, Marco (2020) Nanostructure stabilization by low-temperature dopant pinning in multiferroic BiFeO3-based thin films produced by aqueous chemical solution deposition. In: JOURNAL OF MATERIALS CHEMISTRY C, 8 (12) , p. 4234 -4245.-
item.accessRightsOpen Access-
crisitem.journal.issn2050-7526-
crisitem.journal.eissn2050-7534-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
carlos.pdfPublished version5.97 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

9
checked on Apr 30, 2024

Page view(s)

68
checked on Sep 7, 2022

Download(s)

22
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.