Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3136
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-26T15:49:12Z-
dc.date.available2007-11-26T15:49:12Z-
dc.date.issued1999-
dc.identifier.citationADVANCES IN MATHEMATICS, 144(2). p. 161-220-
dc.identifier.issn0001-8708-
dc.identifier.urihttp://hdl.handle.net/1942/3136-
dc.description.abstractLet G be a connected reductive algebraic group over an algebraically closed field of characteristic zero and let W, U be two finite dimensional representations of G In this paper we compute the local cohomology of (U x SW)(G) provided a certain relatively weak technical condition is true. (C) 1999 Academic Press.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC-
dc.subject.othercovariants; local cohomology; equivariant D-modules-
dc.titleLocal cohomology of modules of covariants-
dc.typeJournal Contribution-
dc.identifier.epage220-
dc.identifier.issue2-
dc.identifier.spage161-
dc.identifier.volume144-
local.format.pages60-
dc.description.notesLimburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.van den Bergh, M, Limburgs Univ Ctr, Dept WNI, Univ Campus,Bldg D, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000081038300003-
item.fulltextNo Fulltext-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationVAN DEN BERGH, Michel (1999) Local cohomology of modules of covariants. In: ADVANCES IN MATHEMATICS, 144(2). p. 161-220.-
item.accessRightsClosed Access-
item.validationecoom 2000-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.