Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/31371
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | NASSIRI, Vahid | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | VERBEKE, Geert | - |
dc.contributor.author | Barbosa-Breda, Joao | - |
dc.date.accessioned | 2020-07-01T13:34:42Z | - |
dc.date.available | 2020-07-01T13:34:42Z | - |
dc.date.issued | 2020 | - |
dc.date.submitted | 2020-06-23T12:03:51Z | - |
dc.identifier.citation | The American statistician, 74 (2) , p. 125 -136 | - |
dc.identifier.issn | 0003-1305 | - |
dc.identifier.uri | http://hdl.handle.net/1942/31371 | - |
dc.description.abstract | We consider multiple imputation as a procedure iterating over a set of imputed datasets. Based on an appropriate stopping rule the number of imputed datasets is determined. Simulations and real-data analyses indicate that the sufficient number of imputed datasets may in some cases be substantially larger than the very small numbers that are usually recommended. For an easier use in various applications, the proposed method is implemented in the R package imi. | - |
dc.description.sponsorship | Funding The authors gratefully acknowledge the financial support from the IAP research network # P7/06 of the Belgian Government (Belgian Science Policy). The research leading to these results has also received funding from the European Seventh Framework Programme FP7 2007–2013 under grant agreement no. 602552. We gratefully acknowledge support from the IWTSBO ExaScience grant. Acknowledgments We are grateful for suggestions made by anonymous referees, which have greatly helped to improve this article. We also wish to thank Ophthalmology Department of UZ Leuven for providing the Leuven Eye Study dataset. | - |
dc.language.iso | en | - |
dc.publisher | AMER STATISTICAL ASSOC | - |
dc.rights | 2019 American Statistical Association | - |
dc.subject.other | Central limit theorem | - |
dc.subject.other | Incomplete data | - |
dc.subject.other | Iterative procedure | - |
dc.subject.other | Missing data | - |
dc.title | Iterative Multiple Imputation: A Framework to Determine the Number of Imputed Datasets | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 136 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 125 | - |
dc.identifier.volume | 74 | - |
local.format.pages | 12 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Nassiri, V (reprint author), Katholieke Univ Leuven, I BioStat, B-3000 Louvain, Belgium. | - |
dc.description.notes | vahid.nassiri@kuleuven.be | - |
dc.description.other | Nassiri, V (corresponding author), Katholieke Univ Leuven, I BioStat, B-3000 Louvain, Belgium. vahid.nassiri@kuleuven.be | - |
local.publisher.place | 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.source.type | Article | - |
dc.identifier.doi | 10.1080/00031305.2018.1543615 | - |
dc.identifier.isi | WOS:000530956200004 | - |
dc.contributor.orcid | Molenberghs, Geert/0000-0002-6453-5448; Barbosa-Breda, | - |
dc.contributor.orcid | Joao/0000-0001-7816-816X; Verbeke, Geert/0000-0001-8430-7576 | - |
dc.identifier.eissn | 1537-2731 | - |
local.provider.type | wosris | - |
local.uhasselt.uhpub | yes | - |
local.uhasselt.international | yes | - |
item.fulltext | With Fulltext | - |
item.contributor | NASSIRI, Vahid | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | VERBEKE, Geert | - |
item.contributor | Barbosa-Breda, Joao | - |
item.fullcitation | NASSIRI, Vahid; MOLENBERGHS, Geert; VERBEKE, Geert & Barbosa-Breda, Joao (2020) Iterative Multiple Imputation: A Framework to Determine the Number of Imputed Datasets. In: The American statistician, 74 (2) , p. 125 -136. | - |
item.accessRights | Restricted Access | - |
item.validation | ecoom 2021 | - |
crisitem.journal.issn | 0003-1305 | - |
crisitem.journal.eissn | 1537-2731 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Iterative Multiple Imputation A Framework to Determine the Number of Imputed Datasets.pdf Restricted Access | Published version | 2.15 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.