Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/31383
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHABER, Tom-
dc.contributor.authorVAN REETH, Frank-
dc.date.accessioned2020-07-02T09:51:50Z-
dc.date.available2020-07-02T09:51:50Z-
dc.date.issued2020-
dc.date.submitted2020-07-01T13:36:44Z-
dc.identifier.citationSchwardmann, Ulrich; Boehme, Christian; Heras, Dora (Ed.). Euro-Par 2019: Parallel Processing Workshops Euro-Par 2019, Springer-Verlag Berlin, p. 560 -571-
dc.identifier.isbn978-3-030-48339-5-
dc.identifier.isbn978-3-030-48340-1-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/1942/31383-
dc.description.abstractNon-linear mixed effects models (NLMEM) are frequently used in drug development for pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic (PK-PD) analyses. Parameter estimation for these models can be time-consuming due to the need for numerical integration. Additionally, the structural model is often expressed using differential equations requiring computationally intensive time-stepping ODE solvers. Overall, this often leads to long computation times in the order of hours or even days. Combining the right mathematical tools as well as techniques from computer science, the computational cost can be significantly reduced. In this paper, several approaches are detailed for improving the performance of parameter estimation for NLMEM. Applying these, often easy, techniques can lead to an order of magnitude speedup.-
dc.language.isoen-
dc.publisherSpringer-Verlag Berlin-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.rightsSpringer Nature Switzerland AG 2020, corrected publication 2020 The chapter “In Situ Visualization of Performance-Related Data in Parallel CFD Applications” is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/ licenses/by/4.0/). For further details see license information in the chapter. This work is subject to copyright-
dc.subject.otherNon-linear-
dc.subject.otherMixed effects models-
dc.subject.otherHigh-performance computing-
dc.subject.otherParallel-
dc.titleImproving the Runtime Performance of Non-linear Mixed-Effects Model Estimation-
dc.typeProceedings Paper-
dc.relation.edition2019-
local.bibliographicCitation.authorsSchwardmann, Ulrich-
local.bibliographicCitation.authorsBoehme, Christian-
local.bibliographicCitation.authorsHeras, Dora B.-
local.bibliographicCitation.conferencedate2019, August 26-30-
local.bibliographicCitation.conferencenameEuro-par 2019-
local.bibliographicCitation.conferenceplaceGöttingen, Germany-
dc.identifier.epage571-
dc.identifier.spage560-
dc.identifier.volume11997-
local.format.pages12-
local.bibliographicCitation.jcatC1-
local.publisher.placeHEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1007/978-3-030-48340-1_43-
dc.identifier.isi000850928600043-
dc.identifier.eissn1611-3349-
local.provider.typeCrossRef-
local.bibliographicCitation.btitleEuro-Par 2019: Parallel Processing Workshops Euro-Par 2019-
local.uhasselt.uhpubyes-
local.uhasselt.internationalno-
item.validationvabb 2022-
item.contributorHABER, Tom-
item.contributorVAN REETH, Frank-
item.fullcitationHABER, Tom & VAN REETH, Frank (2020) Improving the Runtime Performance of Non-linear Mixed-Effects Model Estimation. In: Schwardmann, Ulrich; Boehme, Christian; Heras, Dora (Ed.). Euro-Par 2019: Parallel Processing Workshops Euro-Par 2019, Springer-Verlag Berlin, p. 560 -571.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn0302-9743-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Improving_the_runtime_performance_of_non_linear_mixed_effects_model_estimation.pdf
  Restricted Access
Peer-reviewed author version290.79 kBAdobe PDFView/Open    Request a copy
978-3-030-48340-1.pdf
  Restricted Access
Published version54.85 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.