Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/31467
Title: Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cells
Authors: LOPES, Tomas 
Cunha, JMV
Bose, S
Barbosa, JRS
Borme, J
Donzel-Gargand, O
Rocha, C
Silva, R
Hultqvist, A
Chen, W.C.
Silva, AG
Edoff, M
Fernandes, PA
Salome, PMP
Issue Date: 2019
Publisher: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Source: IEEE Journal of Photovoltaics, 9 (5) , p. 1421 -1427
Abstract: Currently, one of the main limitations in ultrathin Cu(In,Ga)Se-2 (CIGS) solar cells are the optical losses, since the absorber layer is thinner than the light optical path. Hence, light management, including rear optical reflection, and light trapping is needed. In this paper, we focus on increasing the rear optical reflection. For this, a novel structure based on having a metal interlayer in between the Mo rear contact and the rear passivation layer is presented. In total, eight different metallic interlayers are compared. For the whole series, the passivation layer is aluminum oxide (Al2O3). The interlayers are used to enhance the reflectivity of the rear contact and thereby increasing the amount of light reflected back into the absorber. In order to understand the effects of the interlayer in the solar cell performance both from optical and/or electrical point of view, optical simulations were performed together with fabrication and electrical measurements. Optical simulations results are compared with current density-voltage (J-V) behavior and external quantum efficiency measurements. A detailed comparison between all the interlayers is done, in order to identify the material with the greatest potential to he used as a rear reflective layer for ultrathin CIGS solar cells and to establish fabrication challenges. The Ti-W alloy is a promising a rear reflective layer since it provides solar cells with light to power conversion efficiency values of 9.9%, which is 2.2% (abs) higher than the passivated ultrathin sample and 3.7% (abs) higher than the unpassivated ultrathin reference sample.
Keywords: Back/rear contact;Cu(In, Ga)Se-2 (CIGS);light trapping;optical simulation;thin-film solar cells
Document URI: http://hdl.handle.net/1942/31467
ISSN: 2156-3381
e-ISSN: 2156-3403
DOI: 10.1109/JPHOTOV.2019.2922323
ISI #: WOS:000483015000034
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

3
checked on Sep 7, 2020

WEB OF SCIENCETM
Citations

22
checked on Sep 27, 2024

Page view(s)

22
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.