Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/31682
Title: Er3+/Yb3+ upconverters for InGaP solar cells under concentrated broadband illumination
Authors: Feenstra, J
Six, IF
Asselbergs, MAH
van Leest, RH
DE WILD, Jessica 
Meijerink, A
Schropp, REI
Rowan, AE
Schermer, JJ
Issue Date: 2015
Publisher: ROYAL SOC CHEMISTRY
Source: PCCP. Physical chemistry chemical physics (Print), 17 (17) , p. 11234 -11243
Abstract: The inability of solar cell materials to convert all incident photon energy into electrical current, provides a fundamental limit to the solar cell efficiency; the so called Shockley-Queisser (SQ) limit. A process termed upconversion provides a pathway to convert otherwise unabsorbed low energy photons passing through the solar cell into higher energy photons, which subsequently can be redirected back to the solar cell. The combination of a semi-transparent InGaP solar cell with lanthanide upconverters, consisting of ytterbium and erbium ions doped in three different host materials (Gd2O2S, Y2O3 and NaYF4) is investigated. Using sub-band gap light of wavelength range 890 nm to 1045 nm with a total accumulated power density of 2.7 kW m(-2), a distinct photocurrent was measured in the solar cell when the upconverters were applied whereas a zero current was measured without upconverter. Furthermore, a time delay between excitation and emission was observed for all upconverter systems which can be explained by energy transfer upconversion. Also, a quadratic dependence on the illumination intensity was observed for the NaYF4 and Y2O3 host material upconverters. The Gd2O2S host material upconverter deviated from the quadratic illumination intensity dependence towards linear behaviour, which can be attributed to saturation effects occurring at higher illumination power densities.
Document URI: http://hdl.handle.net/1942/31682
ISSN: 1463-9076
e-ISSN: 1463-9084
DOI: 10.1039/c4cp03752a
ISI #: WOS:000353338800015
Rights: the Owner Societies 2015
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
c4cp03752a.pdf
  Restricted Access
Published version3.73 MBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

14
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

23
checked on Oct 4, 2024

Page view(s)

24
checked on Sep 7, 2022

Download(s)

4
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.