Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/31688
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDE WILD, Jessica-
dc.contributor.authorMeijerink, A-
dc.contributor.authorRath, JK-
dc.contributor.authorvan Sark, WGJHM-
dc.contributor.authorSchropp, REI-
dc.date.accessioned2020-08-12T09:40:53Z-
dc.date.available2020-08-12T09:40:53Z-
dc.date.issued2011-
dc.date.submitted2020-08-12T07:32:18Z-
dc.identifier.citationEnergy & environmental science (Print), 4 (12) , p. 4835 -4848-
dc.identifier.urihttp://hdl.handle.net/1942/31688-
dc.description.abstractSpectral conversion of sunlight is a promising route to reduce spectral mismatch losses that are responsible for the major part of the efficiency losses in solar cells. Both upconversion and downconversion materials are presently explored. In an upconversion process, photons with an energy lower than the band gap of the solar cell are converted to higher energy photons. These higher photons are directed back to the solar cell and absorbed, thus increasing the efficiency. Different types of upconverter materials are investigated, based on luminescent ions or organic molecules. Proof of principle experiments with lanthanide ion based upconverters have indicated that the benefit of an upconversion layer is limited by the high light intensities needed to reach high upconversion quantum efficiencies. To address this limitation, upconverter materials may be combined with quantum dots or plasmonic particles to enhance the upconversion efficiency and improve the feasibility of applying upconverters in commercial solar cells.-
dc.description.sponsorshipWe gratefully acknowledge AgentschapNL for partial financial support within the framework of the EOS-NEO Programme, the Utrecht University Focus and Mass programme, Karine van der Werf and Caspar van Bommel for sample preparation and Freddy Rabouw for Fig. 3. AM acknowledges support from the EU-FP7 NANOSPEC programme (STREP 246200).-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.rightsThe Royal Society of Chemistry 2011-
dc.titleUpconverter solar cells: materials and applications-
dc.typeJournal Contribution-
dc.identifier.epage4848-
dc.identifier.issue12-
dc.identifier.spage4835-
dc.identifier.volume4-
local.bibliographicCitation.jcatA1-
local.publisher.placeTHOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1039/c1ee01659h-
dc.identifier.isiWOS:000297562300005-
local.provider.typeWeb of Science-
item.fulltextWith Fulltext-
item.contributorDE WILD, Jessica-
item.contributorMeijerink, A-
item.contributorRath, JK-
item.contributorvan Sark, WGJHM-
item.contributorSchropp, REI-
item.accessRightsRestricted Access-
item.fullcitationDE WILD, Jessica; Meijerink, A; Rath, JK; van Sark, WGJHM & Schropp, REI (2011) Upconverter solar cells: materials and applications. In: Energy & environmental science (Print), 4 (12) , p. 4835 -4848.-
crisitem.journal.issn1754-5692-
crisitem.journal.eissn1754-5706-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
c1ee01659h.pdf
  Restricted Access
Published version666.7 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

281
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

338
checked on Oct 6, 2024

Page view(s)

24
checked on Sep 7, 2022

Download(s)

4
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.