Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32015
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDIKOPOULOU, Zoumpolia-
dc.contributor.authorPAPAGEORGIOU, Elpiniki-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2020-10-01T10:43:04Z-
dc.date.available2020-10-01T10:43:04Z-
dc.date.issued2020-
dc.date.submitted2020-09-30T18:58:18Z-
dc.identifier.citation2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, p. 1 -8-
dc.identifier.isbn9781728169323-
dc.identifier.issn1558-4739-
dc.identifier.urihttp://hdl.handle.net/1942/32015-
dc.description.abstractLearning FCM models from data without any a priori knowledge and expert intervention remains a considerable problem. This research study utilizes a fully data-based learning method (the glassoFCM) for automatic design of Fuzzy Cognitive Maps (FCM) using large ordinal dataset based on the efficient capabilities of graphical lasso (glasso) models. Therefore, glasso represents its structure as a sparser graph, while maintaining a high likelihood, by producing an adjacent weighted matrix, where relationships are expressed by conditional independences. By minimizing the negative log-likelihood indicates that the model fits better to the data under the assumption that the observed data are the most likely data. The principle questioning is which of the observed concepts is the appropriate to trigger the remaining concepts in the map in order to create the glassoFCMs and obtain reasonable results. The answer derives from the FCM structure analysis based on the strength centrality indices. Moreover, the MAX-threshold algorithm based on the FCM scenario analysis is proposed in order to prune edges and retrieve sparser graphs. This algorithm shrinks the meaningless weights of the FCM, without affecting significantly the outcomes in scenario analysis. The whole approach was implemented in a business intelligence problem of evaluating the attractiveness of Belgian companies.-
dc.language.isoen-
dc.publisherIEEE-
dc.subject.otherfuzzy cognitive map-
dc.subject.othergraphical lasso model-
dc.subject.otherMAX- threshold algorithm-
dc.subject.otherordinal data-
dc.subject.othersparser graph-
dc.titleRetrieving Sparser Fuzzy Cognitive Maps Directly from Categorical Ordinal Dataset using the Graphical Lasso Models and the MAX-threshold Algorithm-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate19-24 July 2020-
local.bibliographicCitation.conferencename2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)-
local.bibliographicCitation.conferenceplaceGlasgow, United Kingdom-
dc.identifier.epage8-
dc.identifier.spage1-
local.bibliographicCitation.jcatC1-
local.publisher.place345 E 47TH ST, NEW YORK, NY 10017 USA-
dc.relation.references[1] B. Kosko, “Fuzzy cognitive maps”, International Journal of Man-Machine Studies, 24 (1), pp. 65–75, 1986. [2] E. Papageorgiou, J. L. Salmeron. “Methods and Algorithms for Fuzzy Cognitive Map-based Modeling”, Intelligent Systems Reference Library 54, pp. 1-28, 2014. [3] M. Schneider, E. Shnaider, A. Kandel and G. Chew, “Automatic construction of FCMs”, Fuzzy Sets and Systems, 93 (2), pp. 161–172, 1998. [4] R. Tibshirani, “Regression shrinkage and selection via the lasso”, Journal of the Royal statistical society, B 58, pp. 1436–1462, 2006. [5] D. Witten, J. Friedman and N. Simon, “New insights and faster computations for the graphical lasso”, Journal of Computational and Graphical Statistics 20(4), pp. 892-900, 2011. [6] G. R. Grimmett, “A theorem about random fields”, Bull. Lond. Math. Soc. 5, pp. 81–84, 1973. [7] S.L. Lauritzen, “Graphical Models”, Oxford Univ. Press, New York, 1996. [8] J.M.B. Haslbeck, L.J. Waldorp, “Structure estimation for mixed graphical models in high-dimensional data”, Anals of Applied Statistics, 2015. (in press) ArXiv: 1510.05677, URL http://arxiv.org/abs/1510.05677. [9] J.M.B. Haslbeck, L.J. Waldorp, “How well do Network Models predict Future Observations? On the Importance of Predictability in Network Models”, Behavior Research Methods, 50, pp. 853-861, 2018. [10] J. Wright, S.: On the nature of size factors. Genetics 3, 367–374, 1918. [11] E. Harary, F., Norman, R.Z., Cartwright, D., “Structural Models: An Introduction to the Theory of Directed Graphs”, John Wiley & Sons, New York, 1965. [12] R. Foygel and M. Drton, “Bayesian model choice and information criteria in sparse generalized linear models”, 2011. arXiv preprint arXiv:1112.5635. URL http://arxiv.org/abs/1112.5635. [13] M. Bougon, K. Weick and D. Binkhorst, “Cognition in organizations: an analysis of the Utrecht Jazz Orchestra”, Admin. Sci. Quart. 22, pp. 606–639, 1977. [14] P.L Loh and M.J. Wainwright, “Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses”, The Annals of Statistics 41, pp. 3022-3049, 2013. [15] URL https://cran.r-project.org/ web/packages/ qgraph/index.html. [16] URL https://cran.r-project.org/web/packages/cluster/cluster.pdf. [17] Z. Dikopoulou and E. Papageorgiou, “Inference of Fuzzy Cognitive Maps (FCMs)”, 2017. URL https://cran.r-project.org/web/packages/fcm /vignettes/vignettes.h t m l. [18] N. Meinshausen and P. Buhlmann, “High-dimensional graphs and variable selection with the lasso”, The Annals of Statistics, 34(3), pp. 1436–1462, 2006. [19] Z. Dikopoulou, E. Papageorgiou, V. Mago, K. Vanhoof, “A new approach using Mixed Graphical Model for automated design of Fuzzy Cognitive Maps from ordinal data”, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2017 doi:10.1109/fuzz-ieee.2017.8015607. [20] E.I. Papageorgiou, M.F. Hatwágner, A. Buruzs, L.T. Kóczy, “A Concept Reduction Approach for Fuzzy Cognitive Map Models in Decision Making and Management“, Neurocomputing Journal, Special Issue on Fuzzy Cognitive Maps, vol 232, pp 16–33, 2017. http://dx.doi.org/10.1016/j.neucom.2016.11.060 [21] E.U. Özesmi, S.L. Özesmi, “Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach”, Ecological Modelling, 176(1-2), pp. 43–64, 2004. doi:10.1016/j.ecolmodel.2003.10. 027 [22] M.E.J. Newman, “Analysis of weighted networks”, Physical Review E, 70(5), 2004. doi:10.1103/physreve.70.056131 [23] M. Kendall, J. D. Gibbons, “Rank Correlation Methods”, Charles Griffin Book Series (5th ed.). Oxford: Oxford University Press, 1990 [First published 1948]. [24] G. Costantini, S. Epskamp, D. Borsboom, M. Perugini, R. Mõttus, L.J. Waldorp, and A.O.J. Cramer, “State of the aRt personality research: A tutorial on network analysis of personality data in R”, Journal of Research in Personality, 54, pp. 13–29, 2015. [25] A.O.J. Cramer, S. van der Sluis, A. Noordhof, M. Wichers, N. Geschwind, S.H. Aggen, “Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people European”, Journal of Personality, 26 (4) pp. 414-431, 2012. doi:10.1002/per.1866 [26] R.J. McNally, “Can network analysis transform psychopathology?” Behaviour Research and Therapy, 86, pp. 95-104, 2016. doi:10.1016/j.brat.2016. 06.006 [27] J.F Hair, W.C. Black, B.J. Babin, and R.E. Anderson, “Multivariate Data Analysis” (new int. ed.). Harlow: Pearson Education, 2014. [28] S.S. Stevens, “On the Theory of Scales of Measurement”, Science. New Series. 103 (2684) pp. 677–680, 1946. [29] J. C. Anderson, and D.W. Gerbing, “Structural equation modeling in practice: A review and recommended two-step approach”, Psychological Bulletin, 103(3), pp. 411-423, 1988. [30] J.P. Craiger, D.F. Goodman, R.J. Weiss, and A. Butler, “Modeling organizational behavior with Fuzzy Cognitive Maps”, Int. J. Comput. Intell. Org., vol. 1, pp. 120–123, 1996. [31] S. Ahmadi, E. Papageorgiou, C.-H. Yeh, and R. Martin, “Managing readiness-relevant activities for the organizational dimension of ERP implementation”, Computers in Industry, 68, pp. 89–104, 2015. doi:10.1016/j.compind.2014.12.009 [32] M. Arvan, A. Omidvar, and R. Ghodsi, “Intellectual capital evaluation using fuzzy cognitive maps: A scenario-based development planning”, Expert Systems with Applications, 55, pp. 21–36, 2016. doi:10.1016/j.eswa.2015.12.044 [33] M. Zarrin and A. Azadeh, “Mapping the influences of resilience engineering on health, safety, and environment and ergonomics management system by using Z -number cognitive map”, Human Factors and Ergonomics in Manufacturing & Service Industries, 2018. doi:10.1002/hfm.20766 [34] E. Bakhtavar and Y. Shirvand, “Designing a fuzzy cognitive map to evaluate drilling and blasting problems of the tunneling projects in Iran”, Engineering with Computers, 2018. doi:10.1007/s00366-018-0581-y [35] C. D. Stylios, E. Bourgani and V. C. Georgopoulos, “Impact and Applications of Fuzzy Cognitive Map”, 2020, pp. 229-246. Methodologies Kosheleva, O., Shary, S. P., Xiang, G., & Zapatrin, R. (Eds.). (2020). Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications. Studies in Computational Intelligence. doi:10.1007/978-3-030-31041-7 [36] I. Kang, S. Lee, J. Choi, “Using fuzzy cognitive map for the relationship management in airline service”, Expert Systems with Applications, 26 (4), pp. 545-555, 2004. 10.1016/j.eswa.2003.10.012 [37] S. Lee, B.G. Kim and K. Lee, “Fuzzy cognitive map-based approach to evaluate EDI performance: a test of causal model”, Expert Systems with Applications, 27(2), pp. 287–299, 2004. doi:10.1016/j.eswa [38] S. Lee, H. Ahn, “Fuzzy cognitive map based on structural equation modeling for the design of controls in business-to-consumer e-commerce web-based systems”, Expert Systems with Applications, 36 (7) , p. 10447-10460, 2009. 10.1016/j.eswa.2009.01.070 [39] S.-C. Huang, S.-L. Lo and Y.-C. Lin, “Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power”, Energy Policy, 63, 851–861, 2013. doi:10.1016/j.enpol.2013.09.012 [40] S. Galehbakhtiari, and T. Hasangholi pouryasouri, “A hermeneutic phenomenological study of online community participation”, Computers in Human Behavior, 48, pp. 637–643, 2015. doi:10.1016/j.chb.2015. 02.005-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1109/FUZZ48607.2020.9177607-
dc.identifier.isi000698733400075-
local.provider.typeCrossRef-
local.bibliographicCitation.btitle2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)-
local.uhasselt.uhpubyes-
item.validationecoom 2022-
item.validationvabb 2022-
item.contributorDIKOPOULOU, Zoumpolia-
item.contributorPAPAGEORGIOU, Elpiniki-
item.contributorVANHOOF, Koen-
item.accessRightsRestricted Access-
item.fullcitationDIKOPOULOU, Zoumpolia; PAPAGEORGIOU, Elpiniki & VANHOOF, Koen (2020) Retrieving Sparser Fuzzy Cognitive Maps Directly from Categorical Ordinal Dataset using the Graphical Lasso Models and the MAX-threshold Algorithm. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, p. 1 -8.-
item.fulltextWith Fulltext-
Appears in Collections:Research publications
Show simple item record

Page view(s)

56
checked on Sep 7, 2022

Download(s)

92
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.