Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32311
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBECKER, Thijs
dc.contributor.advisorPEETERS, Liesbet
dc.contributor.authorKasunumba, Noah
dc.date.accessioned2020-10-01T11:33:33Z-
dc.date.available2020-10-01T11:33:33Z-
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/1942/32311-
dc.format.mimetypeApplication/pdf
dc.languageen
dc.publishertUL
dc.titleTowards personalized medicine: Predicting disability progression of MS patients from evoked potentials
dc.typeTheses and Dissertations
local.bibliographicCitation.jcatT2
dc.description.notesMaster of Statistics-Bioinformatics
local.type.specifiedMaster thesis
item.fulltextWith Fulltext-
item.contributorKasunumba, Noah-
item.fullcitationKasunumba, Noah (2020) Towards personalized medicine: Predicting disability progression of MS patients from evoked potentials.-
item.accessRightsOpen Access-
Appears in Collections:Master theses
Files in This Item:
File Description SizeFormat 
894a5f92-0a21-41fe-b122-f4e36149e835.pdf1.29 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.