Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3238
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-27T12:22:13Z-
dc.date.available2007-11-27T12:22:13Z-
dc.date.issued1998-
dc.identifier.citationPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 126(5). p. 1345-1348-
dc.identifier.issn0002-9939-
dc.identifier.urihttp://hdl.handle.net/1942/3238-
dc.description.abstractLet "HH" stand for Hochschild (co)homology. In this note we show that for many rings A there exists d is an element of N such that for an arbitrary A-bimodule N we have HHi(N) = HHd-z(N). Such a result may be viewed as an analog of Poincare duality. Combining this equality with a computation of Soergel allows one to compute the Hochschild homology of a regular minimal primitive quotient of an enveloping algebra of a semisimple Lie algebra, answering a question of Polo.-
dc.language.isoen-
dc.publisherAMER MATHEMATICAL SOC-
dc.subject.otherHochschild homology; Gorenstein rings-
dc.titleRelation between Hochschild homology and cohomology for Gorenstein rings-
dc.typeJournal Contribution-
dc.identifier.epage1348-
dc.identifier.issue5-
dc.identifier.spage1345-
dc.identifier.volume126-
local.format.pages4-
dc.description.notesLimburgs Univ Ctr, Dept WN1, B-3590 Diepenbeek, Belgium.Van den Bergh, M, Limburgs Univ Ctr, Dept WN1, Univ Campus, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000073199700012-
item.fulltextNo Fulltext-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationVAN DEN BERGH, Michel (1998) Relation between Hochschild homology and cohomology for Gorenstein rings. In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 126(5). p. 1345-1348.-
item.accessRightsClosed Access-
item.validationecoom 1999-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.