Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3238
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-27T12:22:13Z-
dc.date.available2007-11-27T12:22:13Z-
dc.date.issued1998-
dc.identifier.citationPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 126(5). p. 1345-1348-
dc.identifier.issn0002-9939-
dc.identifier.urihttp://hdl.handle.net/1942/3238-
dc.description.abstractLet "HH" stand for Hochschild (co)homology. In this note we show that for many rings A there exists d is an element of N such that for an arbitrary A-bimodule N we have HHi(N) = HHd-z(N). Such a result may be viewed as an analog of Poincare duality. Combining this equality with a computation of Soergel allows one to compute the Hochschild homology of a regular minimal primitive quotient of an enveloping algebra of a semisimple Lie algebra, answering a question of Polo.-
dc.language.isoen-
dc.publisherAMER MATHEMATICAL SOC-
dc.subject.otherHochschild homology; Gorenstein rings-
dc.titleRelation between Hochschild homology and cohomology for Gorenstein rings-
dc.typeJournal Contribution-
dc.identifier.epage1348-
dc.identifier.issue5-
dc.identifier.spage1345-
dc.identifier.volume126-
local.format.pages4-
dc.description.notesLimburgs Univ Ctr, Dept WN1, B-3590 Diepenbeek, Belgium.Van den Bergh, M, Limburgs Univ Ctr, Dept WN1, Univ Campus, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000073199700012-
item.validationecoom 1999-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
item.fullcitationVAN DEN BERGH, Michel (1998) Relation between Hochschild homology and cohomology for Gorenstein rings. In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 126(5). p. 1345-1348.-
item.contributorVAN DEN BERGH, Michel-
Appears in Collections:Research publications
Show simple item record

WEB OF SCIENCETM
Citations

88
checked on Oct 5, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.