Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32414
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLizana, Jesus-
dc.contributor.authorBordin, Chiara-
dc.contributor.authorRAJABLOO, Talieh-
dc.date.accessioned2020-10-07T11:58:43Z-
dc.date.available2020-10-07T11:58:43Z-
dc.date.issued2020-
dc.date.submitted2020-09-02T10:59:46Z-
dc.identifier.citationJOURNAL OF ENERGY STORAGE, 29 (Art N° 101367)-
dc.identifier.urihttp://hdl.handle.net/1942/32414-
dc.description.abstractThermal energy and distributed electricity demand are continuously increased in areas poorly served by a centralized power grid. In many cases, the deployment of the electricity grid is not economically feasible. Small-scale Organic Rankine Cycle (ORC) appears as a promising technology that can be operated by solar energy, providing combined heat and power (CHP) generation. Additionally, thermal energy storage can ensure stable and continuous operation in case of scarce thermal energy availability. This paper evaluates the potential application of latent heat storage to enhance solar ORC performance at operating temperatures between 80 degrees C and 140 degrees C, aiming at improving the efficiency and capacity of ORC for low-cost non-concentrating solar-thermal collectors. Three thermal energy storage scenarios are considered. Scenario 1 and 2 consist of reference cases based on a solar ORC system integrated with a conventional hot water tank and a pressurised water tank. Scenario 3 implements a storage unit based on a phase change material. The simulation was carried out through models developed in TRNSYS for solar energy balance and ASPEN for ORC system performance. The results show that solar latent heat storage tank can provide 54% of useful collector gains with a higher and narrower temperature range in the evaporator, increasing the annual thermal energy capacity by 19%, reducing annual heat losses by 66% and decreasing the investment cost by 50% in comparison with a pressurised water tank. It also allows increasing the efficiency of ORC cycle by approximately 18% (from 8.9% to 10.5%) with a higher net generated power than a conventional water tank integration, scaled up from 498 W to 1628 W. These results highlight the potential benefits that latent heat integration provides to improve the low-cost solar ORC performance for powering electricity and thermal energy supply.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights2020 Elsevier Ltd. All rights reserved.-
dc.subject.otherThermal energy storage-
dc.subject.otherSolar thermal energy-
dc.subject.otherPhase change material-
dc.subject.otherORC-
dc.subject.otherEvacuated tube collector-
dc.titleIntegration of solar latent heat storage towards optimal small-scale combined heat and power generation by Organic Rankine Cycle-
dc.typeJournal Contribution-
dc.identifier.volume29-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesLizana, J (corresponding author), Univ Seville, Inst Univ Arquitectura & Ciencias Construcc, Avda Reina Mercedes 2, Seville 41012, Spain.; Rajabloo, T (corresponding author), Hasselt Univ, Martelarenlaan 42, B-3500 Hasselt, Belgium.; Rajabloo, T (corresponding author), IMEC, Kapeldreef 75, B-3000 Leuven, Belgium.-
dc.description.notesflizana@us.es; talieh.rajabloo@uhasselt.be-
dc.description.otherLizana, J (corresponding author), Univ Seville, Inst Univ Arquitectura & Ciencias Construcc, Avda Reina Mercedes 2, Seville 41012, Spain. Rajabloo, T (corresponding author), Hasselt Univ, Martelarenlaan 42, B-3500 Hasselt, Belgium; IMEC, Kapeldreef 75, B-3000 Leuven, Belgium. flizana@us.es; talieh.rajabloo@uhasselt.be-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr101367-
dc.identifier.doi10.1016/j.est.2020.101367-
dc.identifier.isiWOS:000541973300005-
dc.contributor.orcidLizana, Jesus/0000-0002-1802-5017-
dc.identifier.eissn-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Lizana, Jesus] Univ Seville, Inst Univ Arquitectura & Ciencias Construcc, Avda Reina Mercedes 2, Seville 41012, Spain.-
local.description.affiliation[Bordin, Chiara] Arctic Univ Norway, Tromso, Norway.-
local.description.affiliation[Rajabloo, Talieh] Hasselt Univ, Martelarenlaan 42, B-3500 Hasselt, Belgium.-
local.description.affiliation[Rajabloo, Talieh] IMEC, Kapeldreef 75, B-3000 Leuven, Belgium.-
local.uhasselt.internationalyes-
item.fullcitationLizana, Jesus; Bordin, Chiara & RAJABLOO, Talieh (2020) Integration of solar latent heat storage towards optimal small-scale combined heat and power generation by Organic Rankine Cycle. In: JOURNAL OF ENERGY STORAGE, 29 (Art N° 101367).-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2021-
item.contributorLizana, Jesus-
item.contributorBordin, Chiara-
item.contributorRAJABLOO, Talieh-
crisitem.journal.issn2352-152X-
crisitem.journal.eissn2352-1538-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
jesus.pdf
  Restricted Access
Published version1.94 MBAdobe PDFView/Open    Request a copy
article.pdfPeer-reviewed author version1.55 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

25
checked on Aug 27, 2024

Page view(s)

38
checked on Sep 7, 2022

Download(s)

6
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.