Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3242
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSMITS, Bert-
dc.date.accessioned2007-11-27T12:22:44Z-
dc.date.available2007-11-27T12:22:44Z-
dc.date.issued1998-
dc.identifier.citationZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 78(2). p. 133-136-
dc.identifier.issn0044-2267-
dc.identifier.urihttp://hdl.handle.net/1942/3242-
dc.description.abstractA solution to the second part of Hilbert's 16th problem consists of finding out (or proving the existence of) an upper bound to the number of limit cycles in the family of polynomial planar vector fields. In this article, we indicate a way to tackle the singular perturbation problems that have to be studied in the quadratic case. In particular, for perturbations from the family (lambda x - y)(x + 1) partial derivative/partial derivative + (x + lambda y)(x + 1) partial derivative/partial derivative y, we prove that the cyclicity of certain limit periodic sets is bounded by 1. The proposed method is applicable in any multi-parameter bifurcation problem and forms an extension to the known technique of "significant degeneration", i.e. the rescaling of parameters by means of different weights.-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleSingular perturbations arising in Hilbert's 16th problem for quadratic vector fields-
dc.typeJournal Contribution-
dc.identifier.epage136-
dc.identifier.issue2-
dc.identifier.spage133-
dc.identifier.volume78-
local.format.pages4-
dc.description.notesLimburgs Univ Ctr, B-3590 Diepenbeek, Belgium.Smits, B, Limburgs Univ Ctr, Univ Campus, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000072023200006-
item.accessRightsClosed Access-
item.contributorSMITS, Bert-
item.validationecoom 1999-
item.fullcitationSMITS, Bert (1998) Singular perturbations arising in Hilbert's 16th problem for quadratic vector fields. In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 78(2). p. 133-136.-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.